Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Material Selection and Computational Analysis on DOHC V16 Engine’s Mounting Bracket Using COMSOL Multiphysics

M. V. A. Nag[1]
[1]G.R.I.E.T., Hyderabad, AP, India

Reduction of the engine vibration and the dynamic forces transmitting from engine to the automotive body structure has always been an important part of automotive research. Automobile engineers face the task of creating a mechanism to absorb these vibrations and provide a smooth ride. The usage of Motor Mounts is the best solution for dampening the effects of vibrations and oscillations. This ...

Structural Analysis of a Pressure Sensor for High Temperature Environments

S.V. De Guido[1], G.S. Masi[1], P. Vladimirovich Miodushevsky[1], L. Vasanelli[1]
[1]Department of Innovation Engineering, University of Salento, Lecce, Italy

Pressure sensors operating at the temperature higher that 500 °C are absent in the world market. Our goal is to develop a pressure sensor that can operate at the high temperature up to 700 °C. Our sensor will be made up of a ceramic sensible element and a metallic case. The sensible element will be a ceramic beam with a Weathstone bridge on its surface. A structural analysis on the case has been ...

Numerical Simulations of Methane Aromatization with and without a Ceramic Hydrogen Separation Membrane

Z. Li[1], C. Kjølseth[2], S. Hernandez Morejudo[3], R. Haugsrud[1]
[1]University of Oslo, Department of Chemistry, FERMiO, Oslo, Norway
[2]Protia, Oslo, Norway
[3]University of Oslo, Department of Chemistry, InGAP, Oslo, Norway

Oxygen-free methane aromatization has been attracting growing attention due to a potential means for producing high valuable products such as aromatics and hydrogen. Many studies have been focused on catalysts screening and characterization, and elementary thermodynamic steps of the reaction. However, little attention has been paid to fluid dynamics which are important for an industrial ...

Design and Simulation of MEMS Based Gyroscope for Vestibular Prosthesis

R. Nithya[1], K. Kavitha[1], R. K. Shahana[1], A. Gupta[1], M. Alagappan[1]
[1]Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India

The primary function of the vestibular system is to provide the brain with information about the body\'s motion and orientation. The absence of this information causes blurred vision and spatial disorientation, vertigo, dizziness, imbalance, nausea, vomiting, and other symptoms often characterize dysfunction of the vestibular system. Our aim is to design vestibular prosthesis using COMSOL ...

Simulation of Gravitational Instability During CO2 Absorption in a NaHCO3/Na2CO3 Solution

C. Wylock[1], A. Rednikov[1], B. Haut[1], P. Colinet[1]
[1]Université Libre de Bruxelles (ULB), Transfers, Interfaces and Processes (TIPs), Brussels, Belgium

This work deals with the modeling and the numerical simulation of the CO2 absorption, coupled with a chemical reaction, in an initially quiescent aqueous solution of sodium carbonate (Na2CO3) and bicarbonate (NaHCO3), inside a Hele-Shaw cell. In our Hele-Shaw cell, the liquid fills partially the gap between two parallel transparent Plexiglas plates. CO2 is forced to flow above the liquid in the ...

Behavior Models of Virtual Impactors

R. Haft[1]
[1]Lawrence Berkeley National Laboratory, Hayward, CA, USA

A pocket-size portable particle size detector for diesel and cigarette smoke aerosols is being designed using particle size and composition methods. Aerodynamics, fluid properties, material composition and aerosol composition are taken into account. Testing methods for the design include using an impactor and virtual impactor with two quartz crystal resonators to determine particle composition ...

An Assessment of the Suitability of the Body and Adult Head Coils for Transmission during Paediatric Magnetic Resonance Imaging

G.R. Cook[1], M.J. Graves[1], F.J. Robb[2], D.J. Lomas[1]
[1]Department of Radiology, University of Cambridge, Cambridge, United Kingdom
[2]General Electric Healthcare Coils, Aurora, Ohio, USA

MRI offers many advantages over other modalities and its lack of ionizing radiation is important for children, but can be limited by the radio-frequency (RF) coils available. This work calculates Specific Absorption Rate (SAR) and homogeneity of the RF transmit field (B1+) when imaging infants in adult coils. Two birdcage-type coils were loaded by a tissue model and their B1+ homogeneities ...

Evolution of the Geochemical Background of an HLW Cell in the Callovo-Oxfordian Formation - new

O. Silva[1], M. Pekala[1], D. Garcia[1], J. Molinero[1], A. Nardi[1], M. Grive[1], B. Cochepin[2]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Agence Nationale pour la Gestion des Dechéts Radioactifs, Châtenay-Malabry Cedex, France

The French National Waste Management Agency (Andra) envisages the safe disposal of High-Level Waste Intermediate-Level Long-Lived Waste through deep geological storage (multibarrier). Waste storage is based on the Callovo-Oxfordian formation (CallOx). It has been updated a reactive transport model accounting for the chemical and thermal evolution of a HLW cell. Improvements are a better ...

Numerical Modelling of the Plasma Discharge During Electron Beam Welding (EBW) - new

D. Trushnikov[1], G. Mladenov[2]
[1]Perm National Research Polytechnic University, Perm, Russia
[2]Institute of Electronics of Bulgarian Academy of Sciences, Sofia, Bulgaria

This work describes a model for plasma formation in the keyhole and above the EBW zone. The parameters of the plasma are closely connected to the characteristics of the thermal action of the electron beam on the welded metal, which allows operational control and study of EBW. The ionization intensity of the vapour due to beam electrons and high-energy secondary and backscattered electrons is ...

Modeling Self-Potential Effects during Reservoir Stimulation in Enhanced Geothermal System - new

G. Perillo[1], A. Monetti[2], A. Troiano[2], M. G. Di Giuseppe[2], C. Troise[2], G. De Natale[2]
[1]University of Naples Parthenope, Naples, Italy
[2]INGV-Osservatorio Vesuviano, Naples, Italy

Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock’s permeability. In this work, SP ...