Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Study of Smoldering Combustion of Activated Carbon in Ⅱ Iodine Absorber - new

T. Liang[1], M. Liu[1], X. Liu[1], Z. Meng[1]
[1]Safety Engineering, Zheng Zhou University, Zheng Zhou, Henan, China

Iodine absorber is a widely used purification equipment for purifying air in a nuclear power plant. In China, the common type is Ⅱ iodine absorber. Impregnated activated carbon is the main absorber within the iodine absorber. Because of the decays exothermic of radioactive iodine, heat is generated in the adsorption process. Carbon is a combustible material. Moreover, air is always supplied in ...

A Strategy to Simulate Radio Frequency Heating Under Mixing Conditions

S. Wang [1], L. Chen [1],
[1] Northwest A&F University, Yangling, Shaanxi, China

A computer simulation model was developed using finite element-based commercial software, COMSOL Multiphysics®, to simulate temperature distributions in wheat samples packed in a rectangular plastic container and treated in a 6 kW, 27.12 MHz RF system with and without mixing conditions. The developed model was then experimentally validated by temperature distributions of three layers without ...

Janus 颗粒自驱运动的数值模拟

崔海航 [1], 王雷磊 [1], 谭晓君 [1],
[1] 西安建筑科技大学,西安,陕西,中国

Janus 颗粒是由物理或化学性质不同的两部分所构成的颗粒的总称。由于其结构的特殊性以及自驱动特性使其在MEMS、药物传输等领域有着潜在的应用价值。本文基于COMSOL Mutiphysics® 4.3a 多物理场耦合模拟平台对不同形状的 Pt-SiO2 型 Janus 颗粒的在不同浓度 H2O2 溶液中的自扩散泳动进行了数值模拟,并进一步研究模拟了球形 Janus 颗粒的近壁面运动。

Predicting Critical Current as a Function of Magnetic Field in High-Temperature Superconductors

J. Doody [1], P. Michael [1], R. Vieria [1], W. Beck [1], L. Zhou [1], J. Irby [1],
[1] Massachusetts Institute of Technology - Plasma Science and Fusion Center, Cambridge, MA, USA

REBCO tapes belong to a class of high-temperature superconductors (HTS) that can be superconducting at liquid nitrogen temperatures (77K) as opposed to typical superconductors such as Nb3Sn which need to operate at liquid helium temperatures (4K). One important aspect of designing a super conducting coil is the ability to predict the critical current above which the conductor becomes ...

Transient CFD Investigation of a Photocatalytic Multi-tube Reactor

S. Denys [1], J. van Walsem [1], J. Roegiers [1], S. Lenaerts [1],
[1] University of Antwerp, Antwerp, Belgium

As in industrial countries, people spend most of their time indoors and the stringent heat-insulation measures in combination with deficient ventilation have a negative impact on indoor air quality, one approach for abating indoor air pollution is the integration or retrofitting of a photocatalytic oxidation or PCO reactor into continuous flow. PCO technology is very cost-effective, efficient ...

Use of COMSOL Multiphysics® Software for Physics Laboratory Exercises

H. van Halewijn [1],
[1] Fontys Hogeschool, Applied Physics, Eindhoven, Netherlands

COMSOL Multiphysics® is used to simulate thermal flow experiments at out University for Applied Physics. Students have to measure thermal flow problems and verify the measurements with detailed simulations. The desired accuracy is 5% or less. The presentation will cover 3 laboratory experiments: cooling of an Aluminum rod by natural convection, time dependent heat flow into a container with sand ...

Numerical Study of the Electrical Properties of Insulating Thin Films Deposited on a Conductive Substrate

R.A.Gerhardt[1], and S. Kumar[1]
[1]School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

Parametric finite element simulations were performed to study the effect of film thickness, and electrode size on the different impedance parameters for insulating thin films deposited on a conductive substrate. COMSOL Multiphysics® was used to solve the quasi-static form of Maxwell’s electromagnetic equations in time harmonic mode. Several types of 2D models (linear and axisymmetric) ...

Using Microwaves for Extracting Water From the Moon

Edwin Ethridge
Senior Materials Scientist, NASA Marshall Space Flight Center

A scientific hypothesis states that cryogenic trapped water is just under the surface of lunar soil at the poles in permanently shadowed craters. Microwave energy can be used to efficiently extract this water from permafrost. COMSOL permits calculation of the heating of simulated lunar soil using measured temperature dependent dielectric properties. Calculations at different microwave ...

Large Scale 3D Flow Distribution Analysis in HTPEM Fuel Cells

C. Siegel[1][2], G. Bandlamudi[1][2], N. van der Schoot[1], and A. Heinzel[1][2]
[1]Zentrum für BrennstoffzellenTechnik GmbH, Duisburg, Germany
[2]Institut für Energie- und Umweltverfahrenstechnik, University of Duisburg-Essen, Duisburg, Germany

Accurate bipolar-plate and flow-field layout is one crucial task for optimizing fuel cells. These cell components perform several functions, including charge transport or gas and water transport throughout the cell just to name a few. Overall, the design depends on the fuel cell application or the geometrical size of the assembly. The requirements for a flow-field used in a high temperature ...

Multiphysics Modelling of a Micro Valve

F. Bircher[1] and P. Marmet[1]

[1]Institute of Print Technology, Bern University of Applied Sciences, Burgdorf, Switzerland

Electromagnetic micro valves are currently developed empirically or the different physics are treated separately. To accelerate the development-process and for a better understanding of the overall system, a multiphysics simulation is built up. This simulation considers the electromagnetics, the electronics (including the control of the process), the mechanics and the fluidics with respect to ...