Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Towards a Finite Element Calculation of Acoustical Amplitudes in HID Lamps

B. Baumann[1], M. Wolff[1], J. Hirsch[2], P. Antonis[2], S. Bhosle[3], and R. Valdivia Barrientos[4]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Eindhoven, The Netherlands
[3]LAPLACE, Université de Toulouse and CNRS, Toulouse, France
[4]National Institute of Nuclear Research, Salazar, Ocoyoacac, Mexico

High intensity discharge lamps can experience flickering and even destruction, when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp’s are tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

Dynamic Observation of Magnetic Particles in Continuous Flow Devices by Tunneling Magnetoresistance Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the limitations imposed by the sensors themselves. Thus, certain sensor layouts are restricted to either number sensitive or spatial resolutive measurements of magnetic particles. We investigate different new strategies to increase the detection threshold and introduce designs accomplishing both: ...

Thermo-mechanical Analysis of Steam Generator Bottom Tube Sheet of Steam Generator Test Facility

S. P. Ruhela[1], V. Vinod[1], S. Kishore[1], B. K. Sreedhar[1], I. B. Noushad[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

  Steam Generator Test Facility (SGTF) is set up in IGCAR to optimize the design of Steam Generators (SG) for Fast Breeder Reactors. In the SG of SGTF heat exchange takes place from sodium which enters at 525 ºC and leaves at 355 ºC temperature to the water/steam which enters at 235 ºC and leaves at 493 ºC. To reduce the steady state differential temperature and thermal shock during transients, ...

Probe Type Permanent Magnet Flowmeter

V. Sharma, S. Narmadha, S.K. Dash, R. Veerasamy, B.K. Nashine, K.K. Rajan, and P. Kalyanasundaram
IGCAR, Kalpakkam, Tamil Nadu, India

Prototype Fast Breeder Reactor (PFBR) is a 500MWe, sodium cooled, pool type, mixed oxide (MOX) fuelled reactor. Sodium flow measurement in various loops of the reactor is of prime importance from the operational and safety aspects. To measure the flow of electrically conducting sodium in large secondary circuit pipes, probe type permanent magnet flowmeters (PTFM) are used. PTFM works on the ...

Shearing of the Fiber-Matrix Composite Material and Elastic Properties of Unidirectional Ply

D. Remaoun, and A. Boutaous
Département de Physique, Université des Sciences et de la Technologie, Oran, Algérie

The present work aims to describe the behavior of the interface using the method of load transfer between fiber and matrix in a composite material. Our contribution was first to simulate the mechanical behavior of a composite, for a given radius of the fiber was able to automate the result for different rays thus different proportions of the reinforcement, the simulation was done with software ...

Microfluidic Design of Neuron-MOSFET based on ISFET

A. Jain[1], and A. Garg[2]
[1]BITS Pilani, Goa, India
[2]Bhartiya Vidyapeeth College, New Delhi, India

In this paper we suggest a device which combines the operation of a neuron-MOS and an ISFET. An ISFET is an ion-sensitive field effect transistor used to measure ion concentrations in a solution; when the ion concentration changes, the current through the transistor changes accordingly. A voltage between substrate and the oxide surfaces arises due to an ions sheath. It contains a conventional ...

Simulation of DC Current Sensor

K. Suresh, B.V.M.P.S. Kumar, U.V. Kumar, M. Umapathy, and G. Uma
National Institute of Technology Tiruchirapalli, Tamil Nadu, India

A proximity DC current sensor using of a piezo sensed and actuated cantilever beam with a permanent magnet mounted at its free end is designed and simulated in COMSOL Multiphysics. The change in resonant frequency of cantilever is a measure of the current through the wire. The sensor is found to be linear with good sensitivity.

Transient Analysis of the Triggering Behaviour of Safety Fuses

F. Loos, and H.-D. Ließ
Universität der Bundeswehr München
München, Germany

The purpose of this work is to investigate the triggering behaviour of safety fuses for mobile on board supply systems. The influence of different materials and shapes of the fuses on the triggering behaviour are analyzed. Furthermore, the simulation results obtained by the use of COMSOL Multiphysics® are compared to experimentally achieved data. For the transient simulation of the heat ...

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL’s High Flux Isotope Reactor

P.K. Jain[1], V.B. Khane[2], J.D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]Missouri University of Science and Technology, Rolla, MO, USA

Simulation models for steady state thermal hydraulics analyses of ORNL’s HFIR have been developed using COMSOL. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions. The standard k-? turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow ...

Experimental Validation of Model of Electro-Chemical-Mechanical Planarization (ECMP) of Copper

J. Ebert[1], S. Ghosal[1], A. Emami-Naeini[1]
[1]SC Solutions, Sunnyvale, CA, USA

This paper describes the development of a COMSOL model of Electro-Chemical-Mechanical Planarization (ECMP) that was validated with experimental data. ECMP is used for processing of semiconductor wafers. We developed a 2D model of flow of phosphoric acid solution (the electrolyte) between two parallel plates that focuses on the physics and electrochemistry in ECMP. The model includes steady-state ...