Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics and Simulation of MEMS based Bolometer for Detecting the Radiations in Nuclear Power Plants

K. Umapathi[1], S. Swetha[2], K. Ranjitha[2], K. Vinodh[2], K. Deebiga[1], R. Harisudarsan[1]
[1]United Institute of Technology, Coimbatore, TamilNadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

High performance micro sensors are important to detecting special nuclear materials radiations in different fields to save the globe. This paper is mainly focused on to develop a MEMS based bolometer for detecting the nuclear radiation to provide the high security in Nuclear power Plants. A thermally sensitive micro metal plate is designed and placed on a substrate through micro thermal link. ...

Multiphysics Modelling and Simulation of Implantable Wireless MEMS Capacitive Sensor for Cardiovascular Diagnostics

R.Yogeswari[1], S.Venkateshwaran [1], K.Umapathi[1]
[1]United Institute of Technology,Coimbatore,Tamil Nadu, India

Monitoring the Central aorta is a more effective way to diagnose cardiovascular diseases than conventional techniques. Approximately, six million people in the world are currently living with aortic aneurysm and every year 750,000 new cases are diagnosed. This paper presents the design and simulation of biocompatible Wireless MEMS sensor for detection of intraoperative leaks of the stent graph ...

Fracture on Circuit Board Internal Layers Due to Thermal Stress on Soldered Pins

F. Figueroa[1], P. Aguirre[1]
[1]Sensor Technik Wiedemann GmbH, Kaufbeuren, Germany

Circuit board failures are often ignored because they could be impreceptible. This simulation examines how internal layers around a soldered pin via subject to temperature changes during the soldering process are affected, show the forces involved and determine breaking points. A 2D thermo-mechanical model of a soldered pin is achieved in two simulation steps. First, a connecting pin already ...

Stability of an Underground Limestone Mine

R. Haemers[1], F. Broekkamp[1], H. van Halewijn[1]
[1]Fontys University of Applied Physics, Eindhoven, The Netherlands

The hills of South-Limburg, the Netherlands, are crisscrossed with underground limestone mines. These "caves" are not equally stable, and can be dangerous. With COMSOL Multiphysics® a stability assessment has been made. The first study examines the full stress and displacement profile without excavation. In a second study the domains of the corridors are excluded, to represent the excavation ...

Can Oscillatory Convection Accelerate Signal Propagation in Simple Epithelium?

M. Nebyla[1], M. Pribyl[1]
[1]Institute of Chemical Technology, Prague, Department of Chemical Engineering, Prague, Czech Republic

We introduce a mathematical model of signal transmission in simple epithelial layers. The mathematical model consists of reaction-transport equations for extracellular ligands, cellular receptors, ligand-receptor complexes and a ligand releasing protease. We consider diffusion and nonstationary convective transport of protein ligands in the extracellular space. The study was carried out using ...

Simulation of Beam Propagation with Two-photon Absorption in Semiconductor Materials

Syuhei LEE et al.[1]

[1]Chiba University, Chiba, Chiba, Japan

We have studied ultrafast all-optical switching devices based on two-photon absorption, which are expected to have ultrafast response less than 1 ps in wideband and to be independent of polarization of light. In our laboratory, we have obtained the analytical solution for the equation of light propagation in our model that the two-photon absorption occurs in a sample. Though we have used the ...

Heterodimensional Charge-Carrier Confinement in Sub-Monolayer InAs in GaAs - new

S. Harrison[1], M. Young[1], M. Hayne[1], P. D. Hodgson[1], R. J. Young[1], A. Strittmatter[2], A. Lenz[2], U. W. Pohl[2], D. Bimberg[2]
[1]Department of Physics, Lancaster University, Lancaster, UK
[2]Institut für Festkörperphysik, Berlin, Germany

Low-dimensional semiconductor nanostructures, in which charge carriers are confined in a number of spatial dimensions, are the focus of much solid-state physics research, offering superior optical and electronic properties over their bulk counterparts. Both two-dimensional (2D) and zero-dimensional (0D) structures have seen wide-ranging applications in laser diodes, solar cells and LEDs to name ...

Modelling of a Wool Hydrolysis Reactor - new

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes place. The temperature of the material during the reaction is one of the most influencing parameter and has to ...

Convective Cooling of Electronic Components - new

J. S. Crompton[1], H. Singh[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, LLC, Columbus, OH, USA

In response to continued miniaturization and increased multi-functionality of electronic circuits, the number of integrated circuit (IC) packages on the circuit board continues to increase. As a consequence the operating power density increases and significant increases in the operating temperature of devices result. To maintain operation and long term performance device temperature must be ...

COMSOL Multiphysics® 在热发电用真空集热管设计中的应用

赵旭山 [1], 郝雷 [1], 蒋利军 [1], 米菁 [1], 杨海龄 [1],
[1] 北京有色金属研究总院,北京,中国

随着能源紧张、油价攀升,环境污染严重,利用可再生绿色能源又成为不懈努力的方向。槽式太阳能热发电技术具有兼容性强、对电网冲击小、性价比高、发电成本低、可存储可调度等特点,近年来得到了迅猛发展,其核心部件为高温太阳能真空集热管,如图1所示。本研究利用 COMSOL Multiphysics® 针对真空集热管真实工况下的动态过程开展研究,并在此基础上开展集热管结构的优化设计。 由图1可知:集热管在电站中服役工况下,槽面会聚的太阳光主要集中于集热管下半面,上半面接收的会聚太阳光较少;导热工质自吸收管一端进入,接收会聚太阳光辐照能量,从吸收管另一端流出,流入→流出过程中,导热工质被加热;集热管外表面与外部环境通过热辐射和对流两种方式换热;吸收管与玻璃罩管间形成的环形密闭高真空区域各内表面通过热辐射换热,不考虑对流;集热管两端支撑固定于聚光器上,由于本身自重和热应力 ...