Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Solving Two-scale Transport Laws During Frying of Foods Using COMSOL Multiphysics

J. Maneerote, and P.S. Takhar
International Center for Food Industry Excellence Texas Tech University, Lubbock, TX, USA

Microscale comprised of the scale of food biopolymers at which biochemical reactions and textural changes take place, and the macroscale was the scale of interaction of polymers with surrounding water, vapor and oil phases. Numerous novel equations such as generalized Darcy’s law based fluid transport equations for various phases; near-equilibrium equation governing phase change from liquid ...

Comparative Study of an Open Waveguide.Application to Deconvolution of a Magnetic Probe in Near-Field Zone

A. Saghir, J.W. Tao, and C. Avram
INP, Laplace site Enseeiht, Toulouse, France

We present here our work on deconvolution of a magnetic probe to mesure electromagnetic emissions in near-field zone. To achieve this work,we have chosen a rectangular waveguide (WR90) as a radiating structure.Theoritical near-field is simulated using a FEM software (COMSOL) and also obtained by using a program based on transverse operator method (TOM), that lead to a very good field ...

Stress Analysis of an Electromagnetic Horn

B. Lepers
Université de Strasbourg
Strasbourg, France

An electromagnetic horn is a device used in particle physics to produce a strong pulsed toroidal magnetic field and to focus charged particles toward a detector. A multiphysics analysis is performed to assess the stress level inside the horn structure. In steady state regime, the horn is submitted to a thermal static stress due to thermal dilatation. Then, every 80 ms a strong magnetic field ...

Finite Element Analysis of Equine Tooth Movement Under Masticatory Loading

M. Gardemin[1], M. Lüpke[1], V. Cordes[2], and C. Staszyk[2]
[1]Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Hannover, Germany
[2]Institute of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany

Like humans, horses can develop a variety of dental problems. Different equine diseases occur in different areas of the equine cheek tooth or its surrounding tissues. With a realistic simulation of a chewing cycle it can be possible to link mechanical phenomena such as high stress in distinct areas to commonly occurring diseases. According to different angles of the acting chewing force, ...

Multiphysics Modeling of Nanoparticle Detection - Current Status and Collaboration Sought

D. Krizaj[1], I. Iskra[2], Z. Topcagic[1], and M. Remskar[2]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
[2]Institut Jozef Stefan, Ljubljana, Slovenia

We are developing nanoparticle detector for airborn particles. The detection principle is based on condensation of nanoparticles forming micron sized water droplets and detection of the droplets by a capacitive type nanodetector. We have successfully performed some experimental evaluations of the detection principle and are in the stage of optimization of several parts of the system. As ...

Simulation Studies on Stress Generation and Volume Expansion due to Electrochemical Lithium Insertion in a Silicon Nanowire

G. Sikha, and J. Gordon
Applied Materials, Inc.
Santa Clara, CA

Silicon electrodes are presently being pursued as the potential negative electrode for lithium-ion batteries owing to its high gravimetric (mAh/g) and volumetric capacity (mAh/L) compared to the existing state of the art graphite electrode. Recent experimental studies have demonstrated the use of nano size Si electrodes which minimizes insertion induced stresses due to facile strain ...

Optimization of the Design of a GEM Tracker Based on Gas Flow Simulations with COMSOL

V. De Smet[1], V. Bellini[2], E. Cisbani[3], F. Noto[2], F. Mammoliti[2], C. M. Sutera[4], and M. Mangiameli[4]
[1]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[2]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; INFN – Sezione di Catania, Catania, Italy
[3]INFN – Sezione di Roma - Sanità Group, Roma, Italy; Italian National Institute of Health, Roma, Italy
[4]INFN - Sezione di Catania, Catania, Italy

A Computational Fluid Dynamics study has been performed for a Gas Electron Multiplier (GEM) detector of high energy charged particles, currently under development as part of a new tracker of the high luminosity spectrometers in Hall A at Jefferson Lab. By gradual modifications of the geometry simulated in COMSOL, the design of the frame separating two GEM foils has been optimized with the aim ...

Modeling an electric cell actuator and loudspeaker using COMSOL Multiphysics

W. J. Wu
NTU Nano-Bio MEMS Group
National Taiwan University,

This presentation presented the following: * The building of an FEA model of an electric cell actuator using COMSOL Multiphysics * Validation of this model through the AVID and ESPI measurement systems * The building of an FEA model of an electric loudspeaker using COMSOL Multiphysics * Validation of this model throughan acoustic measurement systems This paper is in Chinese.

COMSOL Multiphysics in Modeling MOCVDs

Y. Shimogaki
Shimogaki Laboratory
Department of Materials Engineering,
The University of Tokyo

This paper showed that: * SAG-MOCVD is a powerful tool to fabricate OEICs and is also effective to extract true surface kinetics during MOCVD. * GaAs-MOCVD process was examined by SAG analysis where it was seen that below 600ºC, surface kinetics shows non-linear behavior. * Surface reaction rate constant of adsorbed species was constant against offset angle, while adsorption equilibrium ...

Flare System Pressure Drop Calculations Using COMSOL

K. Alhazza[1], B. Albusairi[1], H. Kamal[1], H.M.S. Lababiedi[1], A.A. Abbas[2]
[1]Kuwait University, Kuwait City, Kuwait
[2]Petrochemical Industries Company, Kuwait City, Kuwait

COMSOL Multiphysics has been used to validate and check the design of a header transporting ammonia gases released from pressure safety valves (PSVs) to the tip of the flare. The header is part of a dedicated flaring system to contain emissions from ammonia storage tanks. The two main challenges are the low relief pressure and high capacity of the system. Another difficulty is the high relief ...

2671 - 2680 of 2861 First | < Previous | Next > | Last