Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Evaluation of the Shutdown Time of Subsea Pipeline for Oil Transportation - new

D. Maciel[1], N. Bouchonneau[1]
[1]Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil

The maintenance plan or rush-to-repair of a subsea pipeline for oil transport may result in the shutdown of the line, in other words, may stop the flow of fluid. During the shutdown, the temperature of the oil tends to decrease continuously, and the heavy molecules tend to crystallize and suspend in the oil, which increase the viscosity of the oil, and even form a paraffinic compound or freeze ...

Demonstration of All-Optical NAND Logic Gate Using Photonic Integrated Circuits

J. T. Andrews[1], R. Choubey[1], O P Choudhary[1], N. Malviya[1], A. Patel[1], M. Kumar[1], S. Chouksey[1], J. Solanki[1]
[1]National MEMS Design Center, Department of Applied Physics, Shri G S Institute of Technology & Science, Indore 452003 MP, India

A logic gate performs a certain Boolean logic operation on one or more logical inputs and produces a single logical output. The logic values are either “true” or “false.” Logic gates are bistable devices, that is, they may yield one of these two possible stable outputs. The NAND logic is a universal gate; any logic operation can be performed with various combinations of NAND logics. Many ...

A Computational Acoustic Interrogation of Damage to Wind Turbine Blades

R. Canturk [1], M. Inalpolat [1],
[1] University of Massachusetts - Lowell, Lowell, MA, USA

Modern wind turbine blades consist of composite airfoil shaped structures that form a hollow acoustic cavity. Because of continually varying aerodynamic forces, gravitational loads, lightning strikes, and weather conditions, all blades will experience leading and trailing edge splits, cracks, or holes. Acoustic sources (speakers and wind flow) excite this dynamic cavity structure. The blade ...


吴强 [1], 潘崇佩 [1], 张琦 [1],
[1] 南开大学,天津,中国

“极化激元”是固体物理学中的重要概念,泛指各种极性元激发与光子的耦合。其中,声子极化激元是指晶格振动的声子与电磁场中的光子相互耦合的一种极化激元波。使用飞秒光在铁电晶体铌酸锂中通过光学非线性效应可产生声子极化激元,其频率位于太赫兹波段,在晶格的振动弛豫、太赫兹光谱、与介观微结构作用等领域已有广泛应用。 声子极化激元涉及电磁场和晶格场的耦合问题,其形式满足黄昆方程。我们使用 COMSOL Multiphysics® 的多物理场(偏微分方程组以及射频模块)模拟了块状铌酸锂晶体中产生声子极化激元波的产生和传输。 铌酸锂晶体作为太赫兹应用的集成化平台,可通过在平板波导上引入微结构实现对太赫兹波的调控。诸多手段中,太赫兹天线作为电磁场的传播场与局域场转换的关键部件,对太赫兹通信和太赫兹光谱等领域都有不可替代的作用。基于这一点,我们设计了一种尖端相对的棒状天线结构,使用 COMSOL ...

Numerical Simulation of Vibrationally Active Ar-H2 Microwave Plasma

F. Bosi [1], M. Magarotto [2], P. de Carlo [2], M. Manente [2], F. Trezzolani [2], D. Pavarin [2], D. Melazzi [2], P. Alotto [1], R. Bertani [1],
[1] Department of Industrial Engineering, University of Padova, Padova, Italy
[2] CISAS "G.Colombo", University of Padova, Padova, Italy

Microwave discharges have a wide range of applications, such as gas conversion, material processing and surface treatment; also they can provide an efficient way for dissociation of molecular gases as CO2 and N2O. Depending on the operating pressure and temperature, non-equilibrium conditions can be attained within the discharge, where electron temperature, vibrational temperature and ...

Transformation Optics Simulation Method for Stimulated Brillouin Scattering

R. Zecca [1], P. T. Bowen [1], D. R. Smith [1], S. Larouche [1],
[1] Center for Metamaterials and Integrated Plasmonics and Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA

Stimulated Brillouin scattering (SBS) is a nonlinear phenomenon coupling optical and elastic waves. Traditionally regarded as an undesirable side-effect, it has garnered renewed interest as a platform for investigating slow light, nonreciprocity, and for designing high-performance chip-integratable optical elements. While the design of such devices relies on numerical simulations, frequency ...

Photo-Biological Reactor for Organic Waste Consumption and Hydrogen Production - new

L. F. de Souza[1]
[1]Universidade Federal do Paraná, Curitiba, Paraná, Brazil

A simple steady-state photo-fermentative biochemical model was developed using the COMSOL Multiphysics'® Transport of Diluted Species physics interface. A dimensionless model seeks optimal physical parameters based on given biochemical parameters found in literature. A parametric sweep of the physical parameters is enabled without altering the mesh. Other limitations can be easily added to this ...

MEMS based Gecko Foot for Micro Robotics

A. Pasumarthy [1], H. Sinha [1], A. Islam [1],
[1] Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

Gecko foots have inspired researchers to develop designs that can help robots to tread vertically oriented surface. These nanobots find many applications as they can perform a lot of operations more efficiently and also lower the cost of such operations. These can be employed in various fields: medical, industrial etc. Gecko lizards use dry adhesion van der Waals forces to climb walls produced ...

Simulation of Slag/Gas and Slag/Iron Interface Tilting in Blast Furnace Hearth During Slag Tapping

Y. Kaymak [1], T. Hauck [1], R. Lin [2] , H. Rausch [2]
[1] VDEh Betriebsforschungsinstitute GmbH, Düsseldorf, Germany
[2] AG der Dillinger Hüttenwerke, Dillingen, Germany

The blast furnace hearth drainage constitutes a major part of the blast furnace operation. Especially, keeping track of the iron and slag levels is crucial to adapt the tapping strategy. The operational target is usually not only to empty the blast furnace as far as possible but also to keep the slag below a critical level to prevent flooding of the tuyeres where the hot blast is injected into ...

Level Set Method for Fully Thermal-Mechanical Coupled Simulations of Filling in Injection and Micro-Injection Molding Process

M. Moguedet[1], R. Le Goff[1], P. Namy[2], and Y. Béreaux[3]
[1]Pôle Européen de Plasturgie, Bellignat, France
[2]SIMTEC, Grenoble, France
[3]INSA de Lyon, Site de Plasturgie, Bellignat, France

In this work we tackle a more theoretical aspect of micro-injection molding, to better understand physics during the process, through numerical simulations of cavity filling. We developed a two phase flow approach by the use of COMSOL Multiphysics®. In a first step, a Level Set model is applied to several configurations: Newtonian and non Newtonian fluid (Cross viscosity law), coupled with a ...