Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Development of a Thermal Model Using COMSOL Multiphysics® Software

A. Oukaira [1], A. Lakhssassi [1],
[1] Department of Computer Science, Université du Québec en Outaouais à Hull, Gatineau, QC, Canada

The Purpose of this paper is to develop a thermal model using COMSOL Multiphysics® software that aims to get an idea of the heat flow around the ASIC, as well as to address the thermal issues for integrated circuits at the tongue board. However, we need sources of heat simulations to map the tab to establish its thermal mapping. This led us to perform simulations at each ASIC of the tab that ...

Frequency Analysis of Si-Wafers with Variable Size and Boundary Conditions

E. Gehrig [1],
[1] Hochschule RheinMain, University of Applied Sciences, Wiesbaden Rüsselsheim, Wiesbaden, Germany

Silicon wafers represent key elements in modern microelectronics or photovoltaics. Technological fabrications of wafer sizes with large diameters (e.g. 450 mm) allow an efficient realization for integrated circuits at low cost. However, this material shows a high sensitivity to vibrations that strongly depends on size and the positioning as well as orientation of a wafer in a mounting, realized ...

Modification of the Ion Angular Distribution in Plasma Sheath: Modeling Approach under COMSOL Multiphysic

J. Brcka
TEL US Holdings, Albany, NY, USA

System for in-situ control of the ion angular distribution function (IADF) in plasma reactor is modeled. Typical IADF depends on the pressure, bias and excitation frequency. It is formed due to a difference in the physical properties of the plasma and sheath domains. The IADF is modified by biased grid which is built into a holder. The time varying E-field in sheath is influencing the ion path. ...

Control of Real Distributed Parameter Systems Modeled by COMSOL Multiphysics® Software - new

C. Belavý[1], G. Hulkó[1], S. Lipár[1], B. Barbolyas[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic

In the paper, first a basic concept of the engineering approach for modeling and control of distributed parameter systems (DPS) based on interpretation of controlled systems as lumped input and distributed output systems (LDS) is introduced. Next, FEM modeling of temperature fields in casting mould and extruder body as real DPS by means of the software environment COMSOL Multiphysics® is ...

Modeling of Space-Charge Effects in 3D Thermionic Devices

P. Zilio [1], W. Raja [2], A. Alabastri [3], R. Proietti Zaccaria [2]
[1] Istituto Italiano di Tecnologia, Italy
[2] Istituto Italiano di Tecnologia, Italy
[3] Rice University, USA

The formation of space charge clouds is a well known problem that affects thermionic emitters in regimes of high current emission. Although some analytical models have been presented, suitable for 1D geometries, the modeling of the problem in complex 3D structures remains a challenge due to the mutual coupling between electron trajectories and field they produce. Here we propose a model able to ...

A COMSOL-based 2D Self-Consistent Microwave Plasma Model

A. Berthelot [1], A. Bogaerts [1],
[1] PLASMANT Group, University of Antwerp, Belgium

In this paper, we present a 2D axisymmetric self-consistent plasma fluid model for microwave plasmas operating in argon. The model was developed using COMSOL Multiphysics and its Plasma Module. Plasma, flow, heat and electromagnetic equations solved self-consistently. The effect of the pressure on the plasma parameters is studied over a wide range of pressures going from 10 mbar to ...

Study of AC Electrothermal Phenomena Models

S. Loire, and P. Kauffmann
University of California
Santa Barbara, CA

Recently, electrokinetic flows have raised the interest of the scientific community. Driving flow with an electric field leads to promising applications for mixing, concentration, pumping application in lab on chips. However, current models are still inaccurate and don\'t fit the measures. The simple decoupled model developed by Ramos et al does not predict velocities for all parameters. ...

Influence of Electrode Kinetics on Lithium-ion Battery Characteristics

H. Machrafi[1,2], S. Cavadias[2]
[1]University of Liège, Thermodynamics of Irreversible Phenomena, Liège, Belgium
[2]University Pierre et Marie Curie, Laboratoire des Procédés Plasma et Traitement de Surface, Paris, France

The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics (including a boundary layer between the electrolyte and the electrode particles). During discharge, the ...

Elucidating the Mechanism Governing Particle Alignment and Movement by DEP

G. Zhang [1], Y. Zhao [1], J. Brcka [2], J. Faguet [2],
[1] Clemson University, Clemson, SC, USA
[2] Tokyo Electron U.S. Holdings, Inc., Austin, TX, USA

We have simulated alignment and movement of multiple particles under Dielectrophoresis (DEP) using the Particle Tracing Module in COMSOL Multiphysics® software with particle-particle interaction taken into consideration. We are able to do efficient modeling for both 2D and 3D cases. With this work, we are able to shed important insights into the process of pearl chain formation, antenna-like ...

Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics

A. Eden [1], M. Sigurdson [1], C. D. Meinhart [1], I. Mezic [1],
[1] University of California - Santa Barbara, Santa Barbara, CA, USA

Measurement of three dimensional, three component velocity fields is central to the development of effective micromixers for bioassays and lab-on-chip mixing applications. We present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations. An optimization algorithm is applied to a ...