Quick Search

Heat Generation in a Vibrating Structure

Application ID: 2205

When a structure is subjected to high frequency vibrations, a significant amount of heat can be generated due to mechanical (viscoelastic) losses in the material. A second mechanism contributing to the slow temperature rise in a vibrating structure is called thermoelastic damping, and represents the energy conversion between mechanical and thermal energy.

In this example, a fully coupled thermoelastic response for a vibrating beam-like structure is computed by combining the stress-strain analysis with the linearized heat-transport equation. The analysis is performed in the frequency domain.

The temperature rise in the beam is then modeled as a transient heat-transfer problem, where the corresponding heat-transfer equation contains two source terms computed using the results of the frequency response analysis. These terms represent the heat generation due to mechanical losses in the material and nonlinear effects related to the thermoelastic damping.

This application was built using the following:

Structural Mechanics Module

The combination of COMSOL® products required to model your application depends on the physics interfaces that define it. Particular physics interfaces may be common to several products (see the Specification Chart for more details). To determine the right combination of products for your project, you should evaluate all of your needs in light of each product's capabilities, consultation with the COMSOL Sales and Support teams, and the use of an evaluation license.