Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Upscaling of Heterogeneous Rock Properties via a Multiscale Image to Simulation Approach

S. Zhang[1], M. Pal[2], P. Barthelemy[1], M. Lei[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Shell International Exploration and Production, Rijswijk, The Netherlands

The mass and recoverability of oil and gas in unconventional reservoirs strongly depend on the understanding the petrophysical properties of the rocks at a large range of scales. Three-dimensional imaging is capable of unveiling the detailed microstructures within the rocks down to the nanometer scale. Using a multiscale imaging protocol, a Devonian shale rock sample with heterogeneities is ...

COMSOL Modeling of a Submarine Geothermal Chimney

M. Suárez [1], and F. Samaniego [2]
[1]Faculty of Sciences, Michoacán University (UMSNH), Morelia, Michoacan, Mexico
[2]Faculty of Engineering Postgrade Studies Division, National University of Mexico (UNAM), Mexico City, Mexico

New geothermal energy sources hold promise for the future. Deep submarine geothermal energy related to hydrothermal vents is emerging in many places along the oceanic spreading centers. Shallow submarine geothermal systems are found near to continental platforms. We present the initial development of mathematical models to simulate the energy transport in submarine systems. A model for the ...

Modelling the Thermal Impact of a Repository for High-Level Radioactive Waste in a Clay Host Formation

X. Sillen
Belgian Nuclear Research Centre (SCK-CEN), Waste & Disposal Department, Mol, Belgium

Disposal in deep clay geological formations is one of the promising options for disposal of high-level radioactive waste. Yet, they can generate considerable amounts of heat as a side effect of radioactive decay. This paper shows how COMSOL Multiphysics has been used to evaluate the physical impacts of the heating on the geological media around a deep disposal system. The software was found ...

Deep-Seated Spreading Model Tested on Etna Mount with FEM

F. Pulvirenti[1,2], M. Aloisi[1], M. Mattia[1], and C. Monaco[2]
[1]Istituto Nazionale di Geofisica e Vulcanologia sezione di Catania
[2]Università di Catania

Structural, morphological and ground deformation studies suggest that the eastern flank of Mt. Etna (eastern Sicily) is spreading seaward.  According to the deep-seated spreading model, both the volcanic edifice and its uppermost basement are spreading eastwards because of magma inflation processes related to a dike complex located at a depth between the summit craters and the Valle del ...

Channels and Melting in Deformable Porous Media

S. L. Butler

Department of Geological Sciences, University of Saskatchewan, SK, Canada

Partial melting occurs beneath mid-ocean ridges in Earth's mantle and the resulting liquid migrates to the surface to form a new oceanic crust. In this system, mass can be exchanged between the liquid and solid phases through melting and solidification and, at the high temperatures and pressures associated with the Earth's interior, the solid matrix deforms through the process of compaction, ...

The Soil as Bioreactor: Reaction-diffusion Processes and Biofilms

M. Richter[1], S. Moenickes[2], O. Richter[2], T. Schröder[1]
[1]BASF SE, Agricultural Center, Limburgerhof, Germany
[2]Institute of Geoecology, TU Braunschweig, Braunschweig, Germany

In a soil pore, water flows through the biofilm, where the density of the latter was assumed to represent a flow resistance. This mechanism was implemented as a local change of fluid viscosity proportional to local biofilm density. It was assumed that diffusive substrate transport is possible through the biofilm region such that the biofilm was able to degrade the substance. Maximum flow ...

An Extension of Lauwerier’s Solution for Heat Flow in Saturated Porous Media

S. Saeid[1] and F.B.J. Barends[2]
[1]Technical University of Delft, Delft, The Netherlands
[2]Deltares and TU-Delft, Delft, The Netherlands

One of the crucial topics in this century is sustainable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune. Hence, insight is required in the heat balance of potential aquifer systems. Essential issues are convection, conduction and dispersion. This article focuses on Lauwerier’s problem. As an extension, it is suggested that beside ...

Coupled Models of Lithospheric Flexure and Magma Chamber Pressurization at Large Volcanoes on Venus

G. Galgana[1], P. McGovern[2], and E. Grosfils[2]

[1]Lunar and Planetary Institute, Houston, Texas, USA
[2]Pomona College, Claremont, California, USA

We present an implementation of the Structural Mechanics module of COMSOL Multiphysics to model the state of stress associated with the emplacement of large volcanic edifices on the surface of a planet. These finite element models capture two essential physical processes: (1) Elastic flexure of the lithosphere beneath the edifice load, and (2) Pressurization of a magma-filled chamber that serves ...

Modeling of the Heat Transfer Between a CO2 Sequestration Well and the Surrounding Geological Formation

B. Sponagle[1], M. Amadu[2], D. Groulx[1], and M. Pegg[2]
[1]Mechanical Engineering, Dalhousie University, Halifax, NS, Canada
[2]Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada

In a carbon sequestration system CO2 would be pumped down a well and into a reservoir at supercritical temperatures and pressures. An important consideration is the long term stability of the reservoir. The goal of these simulations is to thermally model the injection well and investigate the temperature gradient developed in the cap rock. Ultimately, results from this study will lead to an ...

Assessment of Spatial Variably Saturated Flow by Irrigation Moisture Sensors in 2-Dimensions using the COMSOL Multiphysics 4.1

A. Boluwade, and C. A. Madramootoo
Bioresources Engineering, McGill University
Ste. Anne De Bellevue, QC
Canada

This paper reports on the application of COMSOL Multiphysics’ Richard\'s Equation Interface in the assessment of irrigation moisture sensors for detecting the level of water saturation in a spatial variably saturated soil. The Richard\'s Equation (in COMSOL) provides the interface which automates the van Genuchten equation. A hypothetical soil column 4m by 4m was set up with seven irrigation ...

Quick Search