Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Heat and Mass Transfer in Reactive Multilayer Systems (RMS)

M. Rühl[1], G. Dietrich[2], E. Pflug[1], S. Braun[2], A. Leson[2]
[1]TU Dresden, Laser and Surface Technology, Dresden, Germany
[2]IWS Dresden, Fraunhofer Institute for Material and Beam Technology, Dresden, Germany

Established joining techniques like welding, soldering or brazing typically are characterized by a large amount of heat load of the components. Especially in the case of heat sensitive structures like MEMS this often results in stress induced deformation and degradation or even damaging of the parts. A back door of this problem are Reactive Multilayer Systems (RMS). These foils consist of several ...

Development of a Multiphase, Multispecies Droplet Evaporation Model for Optimization of Desiccation Preservation Techniques

A. Sinkevich[1], S. Bhowmick [1], M. Raessi[1]
[1]University of Massachusetts Dartmouth, North Dartmouth, MA, USA

Biopreservation deals with the protection and storage of complex biologics such as proteins, lipids, and recently, mammalian cells. One preservation method, known as lyopreservation, involves placing a biologic inside a water droplet with some type of sugar excipient (sucrose, trehalose, etc.) and drying the solution convectively. We are currently developing a model that couples the two-phase ...

Reverse Electrodialysis Process with Seawater and Concentrated Brines: a COMSOL Multiphysics® Model for Equipment Design

M. Tedesco[1], A. Cipollina[1], C. Scavuzzo[1], A. Tamburini[1], G. Micale[1]
[1]Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo (UNIPA), Palermo, Italy

Salinity Gradient Power (SGP) is a promising renewable energy source associated to the controlled mixing of two aqueous solutions of different salinities. Recently, Reverse Electrodialysis process (SGP-RE, or RED) has been identified as a successful way for the exploitation of such energy source, allowing the conversion of SGP directly into electric energy. COMSOL Multiphysics® modelling ...

Modelling the Response of Microdialysis Probes in Glucose Concentration Measurement

J.M. Gozálvez-Zafrilla[1], A. Santafé-Moros[1], J.L. Díez-Ruano[2], J. Bondia[2]
[1]Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM) - Universitat Politècnica de Valencia, Valencia, Spain
[2]Instituto Universitario de Automática e Informática Industrial (AI2) - Universitat Politècnica de Valencia, Valencia, Spain

Microdialysis is a technique of continuous glucose monitoring in diabetic patients. In microdialysis, a saline serum is perfused into a microdialysis probe. Glucose pass from the plasmatic fluid through the porous membrane. The glucose concentration in the dialysate obtained is measured by an external analytical device. This preliminary work aimed to obtain a model to relate glucose ...

Simulation of the Coalescence and Subsequent Mixing of Inkjet Printed Droplets

M.H.A. van Dongen[1], H.J. van Halewijn[2]
[1]Fontys University of Applied Sciences, Expertise Centre Thin Films & Functional Materials, Eindhoven, The Netherlands
[2]Fontys University of Applied Sciences, Eindhoven, The Netherlands

Coalescence of droplets is a widely investigated phenomenon. In inkjet printing micrometer sized droplets are deposited on a substrate which when positioned close enough to each other will coalesce and mix. Little is known about the flows and mixing behaviour within these small droplets. In this investigation we follow the time evolved coalescence of two droplets with volume ratios ranging from ...

Boundary Value Effects on Migration Patterns in Hydraulically Fractured Shale Formations

T. Aseeperi[1]
[1]Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA

During the hydraulic fracturing process, there can be possible re-activation of closed/sealed faults and natural fractures in the formation, which may lead to changes in the boundary conditions of the reservoir. While study models of shale gas formations have utilized the concept of a closed reservoir in order to optimize the production of gas in the well-bore, this assumption cannot be adopted ...

Modeling Phase Separation of Toluene-water in a Horizontal Settler

E. Barega, E. Zondervan, and A.B. De Haan
Eindhoven University of Technology, Dep. Chemistry and Chemical Engineering, Eindhoven, the Netherlands

The mixer-settler principle is commonly used for industrial extraction processes. This is done by mixing the two immiscible liquids to perform mass transfer and subsequently separating them in gravity settler. However, when drop size becomes small, separation in a settler becomes difficult and entrainment of valuable chemical occurs. Moreover, entrained impurities dilute the product. ...

The use of CFD Modeling to Determine the Influence of Residence Time Distribution on the Disinfection of Drinking Water in Ozone Contactors

J. Hofman1,2,3, D. Wind1, B. Wols3, W. Uijttewaal3, H. van Dijk3, and G. Stelling3
1Waternet, Amsterdam, The Netherlands
2Kiwa Water Research, Rijswijk, The Netherlands
3Delft University of Technology, Delft, The Netherlands

Disinfection is one of the most important aspects of drinking water treatment and is directly related to public health.Waternet uses ozone treatment as a main disinfection for drinking water production. Residence time distribution (RTD) in the ozone contactor has a large influence on the disinfection performance of the system. To get more insight into the effect of RTD, a multiphysics model was ...

Equation Based Heat and Mass Transfer in Porous Media

S. Pemberton[1], K. Ekici[1], R. Arimilli[1]
[1]The University of Tennessee, Knoxville, TN, USA

Perspiration during intense physical activity is an essential part of human thermoregulation. Clothing affects the cooling rate of the body. Heat and water vapor are coupled through evaporation and transported through the fabric. A model of the above system was developed for fabrics of different properties to simulate human cooling using COMSOL Multiphysics®. Equation-based modeling allows the ...

Transport of Cadmium through Molten Salt to Argon Cover Gas in Electrorefiner

K.Revathy[1], S. Agarwal[1], B. Muralidharan[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Electro refining is one of the important step in the Pyro processing nuclear spent fuel with molten salt. The electro refiner is a process vessel consists of anode ,cathodes and stirrers and ultra –high pure argon gas is provided at the top for inert atmosphere and at the bottom a cadmium layer is provided. The vapor pressure of the cadmium is high at the operating temperature, the cadmium ...

Quick Search