See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Structural Mechanics and Thermal Stressesx

Simulation of an Ultrasonic Immersion Test for the Characterization of Anisotropic Materials

A. Castellano[1], P. Foti[1], A. Fraddosio[1], S. Marzano[1], M.D. Piccioni[1], D. Scardigno[1]
[1]DICAR, Politecnico di Bari, Bari, Italy

Introduction: Improving the capability of nondestructive evaluations requires the analysis of suitable models dealing with the physical and mechanical phenomena involved in the experiments. For example, ultrasonic tests may be a powerful, fast and effective method for nondestructive ... Read More

An Innovative Solution for Water Bottling Using PET

D. Scardigno[1], A. Castellano[1], P. Foti[1], A. Fraddosio[1], S. Marzano[1], M.D. Piccioni[1]
[1]DICAR, Politecnico di Bari, Bari, Italy

Introduction: We study an innovative technology for water bottling using PET, aimed at reducing the thickness of the plastic bottles. The goals are the reduction of the amount of plastic used for a single water bottle, the reduction of the packaging costs and more environmental ... Read More

The Non Linear Behavior of the Microplane Model in COMSOL

A. Frigerio[1]
[1]RSE, Milano, Italy

The safety of large civil structures is often evaluated by means of numerical models based on the Finite Element Method (FEM). In the last year, the elastic behavior of the Microplane Model was implemented in COMSOL because it is a promising approach able to overcome the limit typical of ... Read More

A Parametric Study on the Dynamic Behavior of Cable Supported Bridges Under Moving Loads Affected by Accidental Failure Mechanisms

P. Lonetti[1], A. Pascuzzo[1], R. Sarubbo[1]
[1]Department of Structural Engineering, University of Calabria, Rende, Cosenza, Italy

The dynamic behavior of cable supported bridges subjected to moving loads and affected by corrosion and accidental failure mechanism in the cable suspension system is investigated. The different types of cable supported bridges are distinctively characterized by the configuration of the ... Read More

Simulation of a Seal

V. Viola[1]
[1]CARCO, Basiano, Milano, Italy

Simulations of more than one type of seal have been done where the deformation and the stress of the seal itself or the pressure on the housing are of interest. According to the deformation of the seal we can modify the housing of the seal or its geometry depending on the design ... Read More

Time-Dependent Thermal Stress and Distortion Analysis During Additive Layer Manufacturing, by Powder Consolidation by Laser Heating

M.S. Yeoman[1], J. Sidhu[2]
[1]1. Continuum Blue Ltd., Tredomen Innovation & Technology Park, Tredomen, Ystrad Mynach, United Kingdom
[2]BAE Systems, Advanced Technology Centre, Bristol, United Kingdom

A time-dependent COMSOL Multiphysics model of an additive manufacture process, which uses powder consolidation by laser heating was developed, providing a platform to better understanding the manufacture process & provide a tool to reduce resulting distortion & optimization of an ... Read More

Stress and Fatigue Analysis of Subsea Umbilical and Cable Systems

M.S. Yeoman[1], V. Sivasailam[1], T. Poole[3], S. Ingham[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[3]JDR Cable Systems, Littleport, Cambridgeshire, United Kingdom

With the ever changing energy requirements & demand for better communication links across the planet, subsea umbilical & cable requirements are becoming more stringent. Where longer service life at a lower cost is now expected from manufacturers. In addition to this, with the ... Read More

Fretting Wear and Fatigue Analysis of a Modular Implant for Total Hip Replacement

M.S. Yeoman[1], A. Cizinauskas[1], D. Rangaswamy[1]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom

Modular orthopaedic devices are a feature of total joint replacements today. These modular orthopaedic devices allowing surgeons to choose from a variety of available implant sizes, designs & material options for the procedure required and the patient specific requirements. However, ... Read More

Investigation of the Effect of Spinal Defects on Spondylolysis and Stress Fracture of Vertebral Bodies

M.S. Yeoman[1], C. Quah[2], A. Cizinauskas[1], K. Cooper[1], D. McNally[5], B. Boszczyk[2]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]The Centre for Spinal Studies and Surgery, Queen’s Medical Centre, Nottingham, United Kingdom
[5]Bioengineering Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, United Kingdom

Spondylolysis (SL) is a defect of the spinal vertebra, and is typically caused by stress fracture of the pars interarticularis bone of the vertebral arch. It is especially common in adolescents who over train in sporting activities. Spina bifida occulta (SBO) is a malformation of the ... Read More

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem ... Read More