Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Coupled PDEs with Initial Solution from Data in COMSOL Multiphysics®

M. K. Gobbert[1], X. Huang[1], S. Khuvis[1], S. Askarian[1], B. E. Peercy[1]
[1]University of Maryland - Baltimore County, Baltimore, MD, USA

This paper presents information on techniques needed in COMSOL Multiphysics® to enable computational studies of coupled systems of PDEs for time-dependent non-linear problems. Furthermore, we demonstrate how to use data files as input for initial conditions. To illustrate the techniques, we consider a system of two time-dependent non-linear PDEs from mathematical biology that couples an ...

Pedagogic use of COMSOL Multiphysics for Learning Numerical Methods and Numerical Modeling

J-M. Dedulle
L'ecole Nationale Supérieure de Physique de Grenoble

The students at ESPNG have, since 2002, been using COMSOL Multiphysics in order to master physical phenomena and the finite element method. We developed several projects based on the modeling of physics phenomena, and, in this paper, we present projects based on Physical Vapor Transport and Magnetic Levitation. --------------------------------- Keynote speaker's biography: Jean-Marc ...

Modelling of Pressure Profiles in a High Pressure Chamber using COMSOL Multiphysics

P. S. Rao[1], C. K. Chandra[1]
[1]Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India

High Pressure Processing (HPP) is a leading non-thermal food processing technology that is often cited as a major technological innovation in food preservation. Although it is very early to place this emerging technology among the list of breakthroughs in food processing, HPP has started to become a viable commercial alternative for pasteurisation of value added fruits, vegetables, meat, and ...

Geometric Modeling and Numerical Simulation of Airfoil Shapes Using Integrated MATLAB® and COMSOL Multiphysics

A. Safari[1], H. Lemu G.[1], H. Severson[1]
[1]University of Stavanger, Stavanger, Norway

This paper proposes a framework for an efficient integration between geometric modeling program and analysis tool for a coming automated aerodynamic design optimization mission. This demand can be addressed by using both in-house codes and commercial software which have the good ability of live-link and efficient integration. In this study, the mathematical modeling of a turbomachinery airfoil ...

Food Cooking Process. Numerical Simulation of the Transport Phenomena

B. Bisceglia[1], A. Brasiello[1], R. Pappacena[1], R. Vietri[1]
[1]University of Salerno, Department of Industrial Engineering, Fisciano (SA), Italy

Aim of the study is to determine the influence of some of the most important operating variables, especially humidity and temperature, of drying air on the performance of cooking process of pork meat. The process is simulated using finite elements software COMSOL Multiphysics®. The proposed model considers two geometries: cylindrical and parallelepiped, with fixed physical properties and ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Pros and Cons of Running COMSOL Multiphysics® Touch-Sensor Simulations on Amazon Web Services™

A. Gourevitch[1]
[1]Cypress Semiconductor Corp., San Jose, CA, USA

We report an implementation of parallel computing on Amazon Web Services™ (AWS) for touch-sensor modeling. COMSOL Multiphysics® was used to simulate an electromagnetic field distribution in a capacitive sensor assembly. Multiple COMSOL jobs were deployed on separate AWS instances and were executed in parallel. The simulation results indicate that implementation of parallel computing for COMSOL ...

Modeling Linear Viscoelasticity in Glassy Polymers using Standard Rheological Models

M. Haghighi-Yazdi, and P. Lee-Sullivan
University of Waterloo
Waterloo, ON
Canada

In this study, a capability has been developed for modeling the linear viscoelastic behaviour of a glassy polymer using COMSOL Multiphysics®. The two rheological models by Maxwell and Kelvin-Voigt were used for modeling stress relaxation and creep loading behavior, respectively, of a typical gas pipe under two modes of plane stress and plane strain. An advantage of the developed model is its ...

The Design of a Multilayer Planar Transformer for DC/DC Converter with a Resonant Inverter

M. Puskarczyk[1], R. Jez [1]
[1]ABB Corporate Research Center, Krakow, Poland

Multilayer planar transformers are widely implemented in power electronic applications. The design process of these elements is complicated due to the complexity of a magnetic circuit and high frequency interactions between windings. Additionally, an analytical approach to the analysis (based on mathematical formulas) can be uncertain. The applied FEM method of the analysis can be a solution to ...

Simulation Organogenesis in COMSOL: Deforming and Interacting Domains

D. Iber[1], D. Menshykau[1]
[1]D-BSSE, ETH Zurich, Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. Organ size changes dramatically during development, and tissues are composed of several layers that may expand ...

Quick Search

1 - 10 of 227 First | < Previous | Next > | Last