Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL News Magazine 2017

Optical and Electrical Modeling of Three Dimensional Dye Sensitized Solar Cells

P. Guo[1]
[1]Northwestern University, Evanston, IL, USA

Dye sensitized solar cells (DSSCs) have received tremendous attention as alternative photon harvesting devices. While the sintered TiO2 nanoparticle network attached with dye molecules achieves efficient photon absorption, the electrons have to diffuse through the long TiO2 network to reach the contact, resulting in a high electron density and thus increased recombination. Extensive research ...

3D Modeling of Planar Discharge of a CO2 Laser

J. Schüttler [1],
[1] Rofin-Sinar Laser GmbH, Hamburg, Germany

High power CO2 lasers have been the workhorses for sheet metal cutting, welding and many more applications in materials processing during the past decades. Even though a significant replacement by fiber coupled lasers takes place, there are still many applications that benefit from the characteristics of CO2 lasers with a high beam quality. Modeling the plasma behavior is essential for ...

Modeling Dielectric Heating: A First Principles Approach

R. W. Pryor [1],
[1] Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

Dielectric heating is an important, widely employed electromagnetic heating technology utilized by consumers, small businesses and industry. This model is used to explore the physical differences manifested when different frequencies are utilized to execute the heat generation process on similar materials in similar geometries. This model is of interest to people with applications in RF or ...

Virtual Prototype of a Dielectric Window for High-Power Microwave Tubes - new

A. Leggieri[1], D. Passi[1], F. di Paolo[1]
[1]Dipartimento di Ingegneria Elettronica, Università degli Studi di Roma Tor Vergata, Rome, Italy

This paper describes the Virtual Prototype of a Dielectric Window or High Power Microwave Vacuum Tubes and Linear Accelerators. Design formulas are provided and Computer Aided Design techniques based on COMSOL Multiphysics® software are proposed. The virtual prototype considers the Thermo-mechanical effects due to the joule effect induced by the power which crosses the DW and the Thermal contact ...

Some Applications on the Fields of Laser, PCF and PCF-Sensor by COMSOL Software

J. Yao
Tianjin University, Tianjin, China

Academician Yao is an expert in nonlinear optics and THz studies and also a consultant of Chinese government for scientific development. In this talk, he introduces various research progress based on COMSOL Multiphysics analysis of his team, including photonic crystal devices (both telecom and THz band), THz lasers, nanophotonic devices, etc.. Moreover, he points out multiphysics analysis brings ...

Simulations of Negative Curvature Hollow-core Fiber - new

J. Zhang[1], Z. Wang[1], J. Chen[1]
[1]College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, China

COMSOL Multiphysics® software was used to simulate and analyze the transmission attenuation spectra of the negative curvature hollow-core fiber (NCHCF) over the wavelength from 2.7 μm to 4.2 μm. The effect of thickness of capillaries and the effect of the distance between the capillaries on confinement loss spectra were studied, which agreed well with the high-loss and low-loss bands predicted ...

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics

C. T. Nadovich [1],
[1] Lafayette College, Easton, PA, USA

The use of grating couplers to couple conventionally phased and polarized light near vertically in and out of optical slab or film waveguides [1] represents an attractive method to interface optical fiber to photonic ICs. Previously developed grating coupler designs use transversely uniform grating structures matched to conventional scalar fiber modes. The performance of these geometries can be ...

Key-Holes Magnetron Design and Multiphysics Simulation

A. Leggieri[1], F. Di Paolo[1], D. Passi[1]
[1]Univeristy of Rome "Tor Vergata" - Department of Electronic Engineering, Rome, Italy

This paper describes the design and characterization of an 8 slots resonant cavity Magnetron, which undergoes thermal-structural effects due to cathode heating. The proposed study involves Thermal Stress, Eigen-frequency and Particle Tracing analysis based on COMSOL Multiphysics®. Magnetrons are well known and often utilized High Power Radiofrequency Vacuum Tube oscillators. In order to ...

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion - new

J. Toney[1], J. Retz[1], V. Stenger[1], A. Pollick[1], P. Pontius[1], S. Sriram[1]
[1]SRICO, Inc., Columbus, OH, USA

This paper presents techniques for modeling annealed proton exchange (APE) and reverse proton exchange (RPE) waveguides in periodically poled lithium niobate for application to optical frequency conversion. A combination of time-dependent diffusion modeling and electromagnetic mode analysis using the RF module are used to predict the relationship between the poling period and the second harmonic ...

Dispersion Analysis in Coaxial Cables at High Frequencies

S. C. Hegde[1]
[1]VIT University, Vellore, Tamil Nadu, India

The coaxial cable is one of the most commonly used bandwidth limited signal transmission line.Dispersion is a signal distortion phenomenon which arises due to frequency dependence of phase velocity of signal components. This phenomenon was explained through time domain approach by studying time taken by signals of various frequencies to propagate through the cable, which eventually may cause ...