See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

RF and Microwave Engineeringx

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the ... Read More

Microwave Radiation to Cure Cork Stoppers Using a Conventional Turntable Configuration

D. Fidalgo[1], J. Monteiro[1], L. Costa[1]
[1]I3N and Physics Department, University of Aveiro, Aveiro, Portugal

This work presents an alternative method for curing cork stoppers based on microwave radiation, which is energetically more efficient, where it is possible to accelerate the reaction rate and therefore reduce the cure time comparatively with conventional curing methods. The microwave ... Read More

Weak Formulations for Calculating Spin Wave Dispersion Relation in Magnonic Crystals

M. Mruczkiewicz[1]
[1]Adam Mickiewicz University, Poznan, Poland

We study the spin wave excitation (coherent precession of magnetic moments) in periodically arranged magnetic stripes, i.e., in one-dimensional magnonic crystal (MC). Two approaches have been implemented. We have defined a structure that dispersion relation can be obtained using both ... Read More

An Assessment of the Suitability of the Body and Adult Head Coils for Transmission during Paediatric Magnetic Resonance Imaging

G.R. Cook[1], M.J. Graves[1], F.J. Robb[2], D.J. Lomas[1]
[1]Department of Radiology, University of Cambridge, Cambridge, United Kingdom
[2]General Electric Healthcare Coils, Aurora, Ohio, USA

MRI offers many advantages over other modalities and its lack of ionizing radiation is important for children, but can be limited by the radio-frequency (RF) coils available. This work calculates Specific Absorption Rate (SAR) and homogeneity of the RF transmit field (B1+) when imaging ... Read More

Detector and Calibration-source Models for the SAFARI Detector Test Facility

M. Audley[1], G. de Lange[1], C. Bracken[2]
[1]SRON Netherlands Institute for Space Research, Groningen, The Netherlands
[2]National University of Ireland, Maynooth, Ireland

SAFARI is a far-infrared imaging spectrometer for the Japanese satellite observatory SPICA. SAFARI covers the wavelength range 34—210 μm (1.4—8.8 THz) using Transition-Edge-Sensor (TES) bolometers. We have built a test facility to qualify and characterize the SAFARI focal plane units ... Read More

Edge Element and Second-Order Nodal Analysis for Arbitrary Shaped Waveguides

H. Arab[1], F. Afshar[2], C. Akyel[1]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada

In this project a two dimensional second order nodal and linear edge elements programming model for homogeneous waveguide is developed and simulated in MATLAB® software Environment. The objective is to reduce or eliminate spurious solutions and to cater for any arbitrarily shaped ... Read More

Scan Angle Stability of a Second-Order Plasma-Switched Frequency Selective Surface

L. W. Cross[1], M. J. Almalkawi[2]
[1]Imaging Systems Technology, Toledo, OH, USA
[2]EECS Department, College of Engineering, University of Toledo, Toledo, OH, USA

Large-area, light-weight electromagnetic protection (EP) structures are needed to protect sensitive microwave sensors and communications systems from high-power microwave (HPM) and electromagnetic pulse (EMP) threats. This paper presents the use of COMSOL Multiphysics® for ... Read More

Modeling Electrical and Thermal Conductivities of Biological Tissue in Radiofrequency Ablation

M. Trujillo[1], E. Berjano[1]
[1]Universidad Politécnica de Valencia, Valencia, Spain

Radiofrequency ablation is a minimally invasive techinique which is used to treat some kinds of cancer. The realism of theoretical models is very important. An influential factor in this realism is mathematical functions that model the temperature-dependence of tissue thermal and ... Read More

Enhancement of Terahertz Emission by AuGe Nanopatterns

H. Surdi[1], A. Singh[1], S. S. Prabhu [1]
[1]Tata Institute of Fundamental Research, Homi Bhabha 
Road, Mumbai,India

Since the advent of Terhertz(THz) technology, improving the THz emission power has been one of the major research goal. One of the methods to increase the THz emission power is to increase the coupling of excitation laser light to the dielectric substrate.The field of nano-plasmonics ... Read More

Au Nanoparticle-based Plasmonic Enhancement of Photocurrent in Gallium Nitride Metal-Semiconductor-Metal (MSM) Ultraviolet Photodetectors

Arjun Shetty[1], K J Vinoy[1], S B Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

III-nitride semiconductors and gallium nitride in particular have recently become increasingly important for optoelectronic applications like LEDs, solar cells and photodetectors due to their attractive properties like wide and direct bandgap, high power handling capability and high ... Read More