Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Skeletal Reduction of Boundary Value Problems over Thin Solids

Suresh, K.
University of Wisconsin – Madison

Boundary value problems posed over thin solids are amenable to a dimensional reduction in that one or more spatial variables may be eliminated from the governing equation, resulting in significant computational gains with minimal loss in accuracy. Extant dimensional reduction techniques unfortunately rely on representing the solid as a hypothetical mid-surface plus a possibly varying thickness. ...

Modelling of continuous steel coating by self-induced ion plating

Contino, A.1, Feldheim, V.1, Lybaert, P.1, Deweer, B,2, Cornil, H.2
1 Faculty of Engineering – Thermal Engng. & combustion Lab., Mons – Belgium
2 Arcelor Innovation, Liège, Belgium

The self-induced ion plating (SIIP) process is a new physical vapor deposition process based on the evaporation of a metallic target (i.e. tin) thanks to a magnetron sputtering system. The aim of this work is to develop a numerical simulation model of the SIIP process in order to predict the target temperature field and from it, the coating profile on the substrate. The simulation of the SIIP ...

Handling Tessellated Free Shape Objects with a Morphing Mesh Procedure in COMSOL Multiphysics®

P. Franciosa[1] and S. Gerbino[2]
[1]Faculty of Engineering, University of Naples Federico II, Napoli, Italy
[2]Faculty of Engineering, University of Molise, Campobasso, Italy

Tessellated models are more and more used in several engineering fields. The need to use such models to quickly perform computer simulations related to coupled physical phenomena, implies the use of dedicated software, allowing to solve, into an integrated environment, multiphysics problems. In the present work, COMSOL Multiphysics® has been used and its ability to handle tessellated models ...

A Numerical Study for Rubber Particles Collection Involved in New Thermoforming Composite Process Using COMSOL Multiphysics®

R. Carbone[1], V. Antonelli[2][3], A. Langella[1], and R. Marissen[3]

[1]Material and Production Engineering Department, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]Institute of Lightweight Structures, Technische Universität München, München, Germany
[3]Design and Production of Composite Structure, Delft University of Technology, Delft, The Netherlands

This paper deal of the forming process applied to the thermoplastic composites. A new thermoforming process that uses rubber particles collection as flexible mould was presented and numerically modeled. A characterization of the rubber in particles form was previously performed to value the material parameters in the user-defined hyperelastic constitutive laws employed in the FEM (Finite Element ...

A Study of Curved Flexures for MEMS

Minhee Jun[1], and Jason V. Clark[1]
[1]Departments of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA

Large deflection actuators are becoming increasingly important for microsystems. Since actuation forces are usually small, large deflection actuators usually require flexures with low stiffness. Rectangular serpentine flexures are often used for such actuators due to their low stiffness and large linear deflection range. In this paper we investigate the performance of curved serpentine flexures ...

Studying Transition Flows for Low Prandtl Number Fluids

H. Jamai[1], A. Elamari[1], M. El Ganaoui[2], F.S. Oueslati[1], B. Pateyron [2], and H. Sammouda[3]
[1]LETTM, Département of physics, F.S.T, Tunisie
[2]SPCTS UMR CNRS, Faculte of Sciences, Limoges, France
[3]ESST-H., Sousse, Tunisie

COMSOL Multiphysics is offering an important alternative to home codes for modeling and simulation of complex problems with including coupled effects on heat and mass transfer. The present work focuses on low Prandtl number fluid melts subject to symmetry breaking and transition to unsteady regimes. These configurations are for practical interest in crystal growth industry, namely the Bridgman ...

Magnetic Fields and Materials for Medical Bone Reconstruction Assisted by Advanced Finite-Element Simulations

A. Sytcheva[1] and T. Herrmannsdörfer[1]
[1]Hochfeld-Magnetlabor Dresden, Forschungszentrum Dresden-Rossendorf, Dresden, Germany

We address the use of magnetic fields, forces, and materials for medical purposes. In particular, the treatment of osteochondral lesions is aimed for. To support ongoing activities in this field of research, last advances in using Finite Element Analysis (FEA) for the simulation of relevant processes, like magnetic targeting and magnetic fixation are reported. The availability of advanced ...

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic character of the UV disinfection configuration. Fouling process involves momentum, heat, and mass transport within ...

Predicting Tsunami Waves by Combining Analytical and Finite Element Methods

N. Aage, R. Sigurbjörnsson, S. Laustsen, and O. Skovgaard
Technical University of Denmark

In this paper, a simple tsunami wave problem is studied. The geometry of consideration is an infinite ocean with appreciable variations of the ocean bottom. Long-wave theory is applied and the flow equations are linearized over depth. It is verified that it is possible to combine the use of analytical methods and COMSOL Multiphysics.

Numerical Bifurcation Analysis of Relative Equilibria with COMSOL

V. Thümmler
Universität Bielefeld, Fakultät für Mathematik, Bielefeld

Relative equilibria are special solutions of partial differential equations (PDEs), which are stationary in an appropriate co-moving frame of reference. If the equation has a special symmetry property - equivariance, then one can transform the equation into the co-moving frame during the computation of the solution. We will show that this can be very convenient for numerical computations. We ...

Quick Search

2741 - 2750 of 3646 First | < Previous | Next > | Last