Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.


宋春芳 [1], 王燕 [1], 金光远 [1], 崔政伟 [1],
[1] 江南大学,无锡,江苏,中国

方便餐盒微波加热特性研究 宋春芳※ 王燕 金光远 崔政伟   (江苏省食品先进制造装备技术重点实验室,江南大学机械工程学院,江苏,无锡,214122) 摘要:本文采用 COMSOL Multiphysics® 建立了电磁与传热耦合的仿真模型,研究方便餐盒微波加热传热特性规律,模型包括加热腔、波导以及可旋转的转盘和物料,通过比较不同转速对仿真结果的影响,选用 7.5rpm 作为转盘转速。研究结果表明,微波功率为 700W,90s 的微波加热后,方便餐盒空间温度场分布和瞬态温度曲线与实验结果基本保持一致,微波仿真模型可行,研究结果为方便餐盒的微波快速加热及工业化生产与加工提供一定的理论依据。 关键词:微波;仿真;转盘;传热 ...

Numerical Analysis Of Entry Length In Cleaning Test Rig

N. Nordin [1]
[1] Universiti Putra Malaysia, Malaysia

Fouling and cleaning processes present a major impact to the manufacturing industry in terms of economics, product quality, product safety, and plant efficiency. An efficient cleaning process is essential is order to remove fouling to maintain quality and safety of production process as well as the product. Thus, cleaning should be done with minimum cost and time, and understanding soil ...

An Extension of Lauwerier’s Solution for Heat Flow in Saturated Porous Media

S. Saeid[1] and F.B.J. Barends[2]
[1]Technical University of Delft, Delft, The Netherlands
[2]Deltares and TU-Delft, Delft, The Netherlands

One of the crucial topics in this century is sustainable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune. Hence, insight is required in the heat balance of potential aquifer systems. Essential issues are convection, conduction and dispersion. This article focuses on Lauwerier’s problem. As an extension, it is suggested that beside ...

COMSOL Multiphysics® Version 4

Svante Littmarck
President and CEO, COMSOL

Svante Littmarck is the CEO of the COMSOL group. He co-founded COMSOL in 1986. He holds a M.Sc. in Applied Mathematics from the Royal Institute of Technology in Stockholm. In 2004 he received an honorary doctoral degree from the Royal Institute of Technology.

Quench Propagation in 1-D and 2-D Models of High Current Superconductors

G. Volpini[1]
[1]LASA Lab., Milan Dept., Istituto Nazionale di Fisica Nucleare, Milano, Italy

The understanding of quench, or the sudden transition to the normal state of a high-current Superconductor (SC), is fundamental for the design of a SC magnet, and it is widely discussed in the literature. This paper presents some simple COMSOL models, which are compared with well-known approximate formulae and some experimental results. These models allow a more precise description than it is ...

Modeling of a DBD Reactor for the Treatment of VOC

L. Braci[1], S. Ognier[1], and S. Cavadias[1]
[1]Laboratoire de Génie des Procédés Plasmas et Traitements de Surfaces, Ecole Nationale Supérieure de Chimie de Paris, University Pierre et Marie Curie, Paris, France

Non-thermal plasma, generated in atmospheric pressure discharges, has been investigated in our laboratory in order to treat highly diluted (300 ppm to 1000 ppm) volatile pollutant. The collision of electrons created in the discharge with atmospheric air, leads to the formation of reactive species that can totally or partially oxidize the pollutants at near ambient temperature. The purpose of the ...

COMSOL Derived Universal Scaling Model For Low Reynolds Number Viscous Flow Through Microfabricated Pillars – Applications to Heat Pipe Technology

N. Srivastava[1], and C.D. Meinhart[1]
[1]Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara California, USA

Cooling of high-power density electronic devices remains a challenge. Microfluidic heat-pipes with the potential of achieving ultra-high thermal conductivities offer a low-cost technology for cooling electronics. To achieve high thermal conductivity, it is critical to maximize the rate of liquid transport inside the heat pipe. We propose a novel array of microfabricated pillars to maximize ...

An All-Purpose Full-Vectorial Finite Element Model for Arbitrarily Shaped Crossed-Gratings

G. Demésy[1], F. Zolla[1], A. Nicolet[1], and M. Commandré[1]
[1]Institut Fresnel, Université Aix-Marseille III, École Centrale de Marseille, France

We demonstrate the accuracy of the Finite Element Method (FEM) to characterize an arbitrarily shaped crossed-grating in a multilayered stack illuminated by an arbitrarily polarized plane wave under oblique incidence. To our knowledge, this is the first time that 3D diffraction efficiencies are calculated using the FEM. The method has been validated using classical cases found in the literature. ...

State of Stress of Subducting Slabs from Viscoelastic Plane Strain Numerical Modelling

E. Carminati[1] and P. Petricca[1]
[1]Dipartimento di Scienze della Terra, Università di Roma La Sapienza, Roma, Italy

Using 2D viscoelastic plane strain models we investigate the dependency of the stress field of slabs on geometry and kinematics of subduction zones (relative velocity of interacting plates and their absolute velocity with respect to the mantle). We conclude that the concentration of Von Mises stress is controlled by the geometry (curvature) of the slab and that downdip compression in subducting ...

Including Expert Knowledge in Finite Element Models by Means of Fuzzy Based Parameter Estimation

O. Krol[1], N. Weiss[1], F. Sawo[1], and T. Bernard[1]

[1]Fraunhofer Institute for Information and Data Processing, Karlsruhe, Germany

In this paper we present a novel approach for modeling spatial distributed bio- chemical and environmental processes like the growth of plants and the related biochemical reactions. The physical phenomena like flow and mass transport can be described by fluid dynamics equations, but for effects like growth rates often no analytic models are available. However, in many cases experts have ...

2701 - 2710 of 3390 First | < Previous | Next > | Last