Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Finite Element Test of the 2002-2003 Etna Eruption

F. Pulvirenti[1][2], M. Aloisi[1], G. De Guidi[2], M. Mattia[1], and C. Monaco[2]
[1]Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Catania, Italy
[2]Dipartimento di Scienze Geologiche, Università di Catania, Catania, Italy

Structural, morphological and ground deformation studies suggest that the eastern flank of Mt. Etna (eastern Sicily) is spreading seaward. Three contrasting models have been proposed: deep-seated spreading, shallow sliding and tectonic block movements. In order to better understand the kinematics of instability processes on eastern flank of Mt. Etna, a numerical simulation has been applied to a ...

Linear Convection and Conduction in Cylinders of Water Exposed to Periodic Thermal Stimuli

R.E. Tosh[1], and H.H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Primary reference standards for determining absorbed dose to water in radiotherapy beams used at cancer clinics and hospitals ultimately must make reference to the temperature change in water produced by ionizing radiation. The most direct experimental technique for this purpose is water calorimetry. Since the dose distributions delivered by such beams are nonuniform, temperature signals ...

Stress Field Simulation for Quantitative Ultrasound Elasticity Imaging

L. Yuan[1] and P.C. Pedersen[1]
[1]Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

Finite element models using COMSOL Multiphysics and MATLAB were developed to solve the problem of stress distribution interior homogeneous, isotropic, incompressible elastic solid material under known vertical external compression with a rectangular contact surface. Moreover, comparison between these results and analytical solutions was used to further validate that stress drops off with ...

Simulation of the Shape of Micro Geometries Generated with Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1,2]
[1]Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute of Machine Tools and Forming Technology, Chemnitz, Germany

Electrochemical Machining with a closed electrolytic free jet is a special procedure to generate complex micro structures by help of anodic dissolution. The work piece shape is fabricated by supplying an electrolytic current through an electrolyte jet ejected from a small nozzle. In this study COMSOL Multiphysics is used to simulate the electric current density in the jet and the dissolution ...

High Vacuum Gas Pumping and Boundary Coupling

M. Cavenago
INFN/LNL, Laboratori Nazionali di Legnaro, Legnaro, Italy

Many scientific instruments are based on high vacuum equipment with a gas pressure maintained in the order of 1 Pa or below. The gas flow in the low pressure limit, called the molecular flow regime, is a case of transport with zero viscosity. The ability to solve an integral equation on the boundary with finite elements methods allows us to find the gas densities and flows in the ...

Finite Element Analysis of Multilayer Transmission Lines for High-Speed Digital Interconnects

S.M. Musa, and M.N.O. Sadiku
Prairie View A&M University, Prairie View, TX, USA

In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. Using COMSOL we mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed asymmetric coupled microstrips and four-line symmetric coupled microstrips with a two-layer substrate. We ...

Thermally Induced-Noise Reduction Using an Electrostatic Force Feedback

H. Lee, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to mitigate the effect of thermally-induced noise in Micro-Electro-Mechanical Systems (MEMS) through a force feedback circuit. Inherent noise-induced vibrations, which would be inconsiderable in macro scale, are considered as a limitation in micro- and nano- scale since it diminishes the high performance of MEMS devices. For instance, depending on the stiffness ...

Modelling of Transport Phenomena and Effect of Applied Electrical Field on Heavy Metals Recovery during Application of the Electro-remediation Process

A. Mahmoud, and J. Beaugrand
Laboratoire de Thermique Energétique et Procédés, ENSGTI, Pau, France

A mathematical model for the simulation of contaminant such as heavy metals removal from soils by electric fields was performed in a 2-D geometry using COMSOL Multiphysics. Electrokinetic phenomena is the result of the coupling between hydraulic and electrical potential gradients in fine grained soils. The model describes the coupled transport of mass and charge of species subjected to an ...

Wind Evaporation On Wetted Surfaces Under Uncertainty Conditions

J.M. Gozalvez-Zafrilla, M.C. Leon-Hidalgo, J. Lora-Garcia, A. Santafe-Moros, and J.C. Garcia-Diaz
Universidad Politecnica de Valencia, Valencia, Spain

Brine disposal from desalination plants placed in inland areas far from sea is an important problem. Evaporation ponds can be used for reducing the waste to solid state but they require huge amounts of land. Evaporation using arrays of wet surfaces can minimize the land requirements. One characteristic of the methods based on natural evaporation is the uncertainty associated to the influent ...

Thermal Characterization of a Chemical Reactor Coupling COMSOL and ModeFrontier

N. Pacheco[1], D. Pavone[1], K. Surla[1], E. Schaer[2], and J. Houzelot[2]
[1]IFP-Lyon, France
[2]LRGP-ENSIC, France

For Hydrogen production purpose from bio-ethanol, IFP set up a pilot reactor that can work at high temperature (1000°C) and high pressure (20 bar). Experiments show that this reactor has a specific thermal behavior that should be modeled in addition to chemical and hydrodynamics to understand and optimize hydrogen production. The multiphysics simulator has been defined in COMSOL and the ...

2701 - 2710 of 3695 First | < Previous | Next > | Last