Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Predicting the Retention Time of Nuclear Reaction Products in the PSI Recoil Chamber Using COMSOL Multiphysics

R. Dressler[1], R. Eichler[1]
[1]Paul Scherrer Institute, Villigen, Switzerland

Introduction: The chemical properties of the heaviest elements (atomic number Z > 103) depend on the influence of the high nuclear charge to their electronic structure. Enhanced chemical stability of copernicium (Cn, Z = 112) and flerovium (Fl, Z = 114) was predicted already 40 year ago by Pitzer [1]. The challenge of chemical investigations of these elements is the tiny production rates of few ...

Scaling Effect in Air Gap MOSFET

R.V. Iyer[1], Vinay K.[1], A. R. Kamath[1], A. Goswami[1], A. Sharma[1], A. V. Joshi[1], A. Mishra[1], N. S. Pai[1], S. Chakraborty[1], Rakesh D.[1]
[1]PES Institute of Technology, Bangalore, Karnataka, India

This abstract addresses the effect of scaling in air gap MOSFETs and determination of functional relationship between scaling parameter and sensitivity, frequency response. The modelling of the MOSFET and its simulations has been carried out using COMSOL Multiphysics. An air Gap MOSFET in its simplest form can be imagined to be one obtained by replacing the dielectric in a MOSFET with air. The ...

Nanoscale Structure Design in EM Fields Using COMSOL Multiphysics

J. Yoo[1], H. Soh[2], J. Choi[3], S. Song[4]
[1]Department of Mechanical Engineering, Yonsei University, Korea
[2]Hyundai Motor Co., Korea
[3]Samsung Electronics Co., Ltd., Korea
[4]Mando Co., Korea

Nanoscale structural analysis and design is presented. All the simulations are carried out using a finite element solver and optimization is performed using parameter and topology optimization schemes. It is concluded that COMSOL is effective for analysis and design of nanoscale structure design in electromagnetic field and it may be combined with several optimization methods to improve system ...

COMSOL Multiphysics® Simulations of Cracking in Point Loaded Masonry with Randomly Distributed Material Properties

A.T. Vermeltfoort[1], A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper describes COMSOL Multiphysics® simulations of the stress and crack development in the area where a masonry wall supports a floor. In these simulations one of the main material properties of calcium silicate, its E-value, was assigned randomly to the finite elements of the modeled specimen. Calcium silicate is a frequently used building material with a relatively brittle fracture ...

FEM Based Studies of a Mg/Al Hybrid Component Joint Regarding Corrosion Prediction

D. Höche[1]
[1]Helmholtz-Zentrum Geesthacht, Germany

The model can be utilized for a virtual design of a hybrid joint interms of corrosion prevention. Structures can be optimized by the simulations by tailoring the parameters to get the most suitable result towards a Computer-Aided Engineering CAE regarding corrosion protection. This kind of computer based studies is a very useful method to accelerate developments in light weight structural design ...

Improvements on Liquid Cyclotron Target Loading/Unloading System Using COMSOL Multiphysics®

F. Alrumayan[1], A. Alghaith[1], J. Schneider, [1], M. Ahmed [1], M. Al-Qahtani[1]
[1]King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

A 3D model was developed using COMSOL Multiphysics® to study the flow dynamics of the water inside the geometry of the [13N] Ammonia target for medical application . The image attached shows a 3D model of the target. A significant improvement was noted after modifying the geometry as suggested by the model and delivery time of radioactive solution was dramatically reduced. Water and aluminum ...

Design and Analysis of Multilayered MEMS Microphone Using COMSOL Multiphysics®

Saranya srinivasa raghavgan[1], Sowmya Srinivasa raghavan[1], Shruti Venkatesh[1]
[1]Rajalakshmi Engineering College, Chennai, India

In this project, we report a design of MEMS microphone that is based on the application of porous silicon in improving the sensitivity of bulk micro machined capacitive pressure sensors. The property of a low Young’s modulus of porous silicon and its dependence on porosity have been exploited to obtain a higher sensitivity compared to pressure sensors with single crystalline silicon membranes. ...

Modelling Ultra-short Pulse Laser Ablation of Dielectric Materials Using multiple Rate Equations - new

P. Boerner[1], K. Wegener[1]
[1]Institute of Machine Tools and Manufacturing, ETH Zurich, Zurich, Switzerland

Ultrafast lasers are widely applied in micromachining, material science and physics. In industry, picosecond lasers are becoming more and more established. For pulse lengths shorter than the electron-phonon coupling time, heat affected zones are negligible. Thermally sensitive materials can be processed using ultrashort pulse laser radiation. Multi-component materials and poorly absorbing ...

Short-Term Behavior and Steady-State Value of BHE Thermal Resistance - new

S. Lazzari[1], A. Priarone[2],
[1]DIN, University of Bologna, Bologna, Italy
[2]DIME-TEC, University of Genova, Genova, Italy

The transient behavior of the thermal resistance of single and double U-tube borehole heat exchangers (BHEs) is investigated numerically by means of COMSOL Multiphysics® software with reference to the 2D cross section of usually employed BHEs. The study is performed in a dimensionless parametrical form, the parameters being the ratio between the thermal conductivities of grout and ground, the ...

Assessment of COMSOL Capabilities to Analyse the Thermo- Hydrodynamic Behaviour of the MSR Core

A. Cammi[1], V. Di Marcello[1], C. Fiorina[1], and L. Luzzi[1]

[1]Nuclear Engineering Division, Department of Energy, Politecnico di Milano, Milano, Italy

The present work is aimed at evaluating the capabilities of COMSOL Multiphysics® to treat heat transfer in Molten Salt Reactors (MSR). The analyzed situation is represented by the molten salt in turbulent regime flowing through a cylindrical channel surrounded by graphite, with both the fluid and the solid generating power. A suitable validation framework has been set up on the basis of an ...

2691 - 2700 of 3379 First | < Previous | Next > | Last