Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimization Module Enables Hybrid Experimental-Numerical Algorithm for 3D Particle Image Velocimetry

M. Sigurdson[1], C. Meinhart[1], I. Mezic[1]
[1]Department of Mechanical Engineering, University of California - Santa Barbara, Santa Barbara, CA, USA

In our study of chaotic mixing, 3D velocity measurements (u,v,w) are required for evaluation of a micro mixer using a mix-prediction algorithm. The hybrid approach presented here combines 2D measurements, an imperfect numerical model, and appropriate fitting parameters. Because our purpose is a measurement, rather than development of a physically accurate and predictive model, it not necessary ...

Toward Energy Zero Building: A COMSOL Multiphysics® Model of Building and its HVAC System

F. Bruno[1]
[1]ENERSPACE Srl, Genoa, Italy

A model built with COMSOL Multiphysics® to exploit meteorological forecasts and instant outdoor meteorological data (temperature, solar radiation, moisture, wind speed and direcition, etc.) together with indoor ambient data (air temperature, radiant temperature of enclosures, etc), building parameters (mass, orientation, surface, structural composition, etc.) and historical consumption of ...

Modeling of Noise Produced by Offshore Wind Turbines with Different Foundations and Effects on the Marine Environment

B. Marmo [1], I. Roberts [1]
[1]Xi Engineering Consultants, Edinburgh, Scotland, UK

Vibration produced by offshore wind turbines during their normal operation transmits through the tower into the foundation where it interacts with the surrounding water and is released as noise. The noise produced by offshore wind turbines can be detected by fish and marine mammals and may lead to alteration of their behavior. Given that noise is emitted at the interface between the foundation ...

Heterodimensional Charge-Carrier Confinement in Sub-Monolayer InAs in GaAs

S. Harrison[1], M. Young[1], M. Hayne[1], P. D. Hodgson[1], R. J. Young[1], A. Strittmatter[2], A. Lenz[2], U. W. Pohl[2], D. Bimberg[2]
[1]Department of Physics, Lancaster University, Lancaster, UK
[2]Institut für Festkörperphysik, Berlin, Germany

Low-dimensional semiconductor nanostructures, in which charge carriers are confined in a number of spatial dimensions, are the focus of much solid-state physics research, offering superior optical and electronic properties over their bulk counterparts. Both two-dimensional (2D) and zero-dimensional (0D) structures have seen wide-ranging applications in laser diodes, solar cells and LEDs to name ...

Cloud Computations for Acoustics with Coupled Physics

A. Daneryd[1], D. Ericsson[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]COMSOL AB, Stockholm, Sweden

For certain classes of scientific and technical computations the cloud may offer easily accessible, scalable, and affordable gigantic computing power. A power that for these classes may lead to a step change in model and analysis complexity compared to what is feasible with dedicated clusters and similar networked solutions. Acoustics with or without interaction with coupled physics fields ...

Evolution of the Geochemical Background of an HLW Cell in the Callovo-Oxfordian Formation

O. Silva[1], M. Pekala[1], D. Garcia[1], J. Molinero[1], A. Nardi[1], M. Grive[1], B. Cochepin[2]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Agence Nationale pour la Gestion des Dechéts Radioactifs, Châtenay-Malabry Cedex, France

The French National Waste Management Agency (Andra) envisages the safe disposal of High-Level Waste Intermediate-Level Long-Lived Waste through deep geological storage (multibarrier). Waste storage is based on the Callovo-Oxfordian formation (CallOx). It has been updated a reactive transport model accounting for the chemical and thermal evolution of a HLW cell. Improvements are a better ...

Computational Modelling of Fluid Dynamics in Electropolishing of Radiofrequency Accelerating Cavities

H. Rana[1], L. Ferreira[2]
[1]Loughborough University, Leicestershire, UK
[2]European Organisation for Nuclear Research (CERN), Genéve, Switzerland

Electropolishing is an electrochemical process that radiofrequency accelerating cavities undergo in order to improve their inner metal surface finishing. This is performed prior to their installation into particle accelerators, in order to enhance their accelerating properties. Using COMSOL Multiphysics® software it was possible to model the process throughout the cavity and study the fluid ...

Simulation and Experimental Validation of Direct Heating of Dhruva Fuel Rod for β Heat Treatment - new

B. Patidar, A. P. Tiwari[1], V. Patidar[1], M. M. Hussain[1], K. K. Abdulla[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashatra, India

β heat treatment of Uranium rods is carried out for randomization of oriented grains (called texture) developed during hot rolling or hot extrusion operation. During this process, Uranium rods undergo heating of up to 740 Deg C followed by water quenching. The objective of this work is to see the feasibility of direct heating technique for heat treatment application. At present, heat treatment ...

Direct Electrohydrodynamic Simulation of Particle Mobility

A. Verschueren, and P. K. Tomaszewski
Philips Research Laboratories Eindhoven
Micro Systems & Devices group
High Tech Campus 4
Eindhoven, The Netherlands

All particles in suspension have a zeta potential, or surface potential. Its measurement is extremely important for predicting the formulation stability across a wide range of industries including food, ink and pharmaceuticals, water purification and medical devices. Zeta potential is not measurable directly but it can be calculated from an experimentally determined electrophoretic mobility. ...

Cellular Convection in Vertical Annuli at roof slab of Fast Breeder Reactor

M. G. Hemanath[1], C. Meikandamurthy[1], G. Padmakumar[1], C. A. Babu[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

In the pool type Fast Breeder Reactors the roof structure is penetrated by a number of pumps and heat exchangers which are cylindrical in shape. Argon gas in reactor is sandwiched between the free surface of sodium and the roof structure and can flow in the annular space between the components and roof structure forming a thermosyphon. These hermosyphons not only transport heat from sodium to ...

Quick Search

2691 - 2700 of 3646 First | < Previous | Next > | Last