Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Pros and Cons of Running COMSOL Multiphysics® Touch-Sensor Simulations on Amazon Web Services™

A. Gourevitch[1]
[1]Cypress Semiconductor Corp., San Jose, CA, USA

We report an implementation of parallel computing on Amazon Web Services™ (AWS) for touch-sensor modeling. COMSOL Multiphysics® was used to simulate an electromagnetic field distribution in a capacitive sensor assembly. Multiple COMSOL jobs were deployed on separate AWS instances and were executed in parallel. The simulation results indicate that implementation of parallel computing for COMSOL ...

In Situ electric field simulation in Metal/Insulator/Metal (MIM) capacitors.

Gaillard, N., Pinzelli, L., Gros-Jean, M., Bsiesy, A.
STMicroelectronics

In recent years, a large variety of high dielectric constant materials has been studied as an alternative to silicon dioxide in order to improve the electrical properties in many integrated devices. The authors pointed out MIM electrical properties modifications such as current-voltage shift and the decrease in the voltage gap between the different conduction mechanisms voltage threshold while ...

A Computational Approach for Simulating p-Type Silicon Piezoresistor Using Four Point Bending Setup

T.H. Tan[1], S.J.N. Mitchell[1], D.W. McNeill[1], H. Wadsworth[2], S. Strahan[2]
[1]Queen's University Belfast, Belfast, United Kingdom
[2]Schrader Electronics Ltd, Antrim, United Kingdom

The piezoresistance effect is defined as change in resistance due to applied stress. Silicon has a relatively large piezoresistance effect which has been known since 1954. A four point bending setup is proposed and designed to analyze the piezoresistance effect in p-type silicon. This setup is used to apply uniform and uniaxial stress along the crystal direction. The main aim of this work is to ...

Multiphysics Investigation of Thermo-optic Effects in Silicon-on-Insulator Waveguide Arrays

F. Magno, F. Dell’Olio, and V.M.N. Passaro
Politecnico di Bari

A theoretical investigation of thermo-optic effect in Silicon-on-Insulator (SOI) rib waveguides and waveguide arrays by means of the Finite Element Method (FEM) has been carried out. Both static and dynamic analyses have been performed.

Demonstration of All-Optical NAND Logic Gate Using Photonic Integrated Circuits

J. T. Andrews[1], R. Choubey[1], O P Choudhary[1], N. Malviya[1], A. Patel[1], M. Kumar[1], S. Chouksey[1], J. Solanki[1]
[1]National MEMS Design Center, Department of Applied Physics, Shri G S Institute of Technology & Science, Indore 452003 MP, India

A logic gate performs a certain Boolean logic operation on one or more logical inputs and produces a single logical output. The logic values are either “true” or “false.” Logic gates are bistable devices, that is, they may yield one of these two possible stable outputs. The NAND logic is a universal gate; any logic operation can be performed with various combinations of NAND logics. Many ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the input and output coupling into the resonator. By pumping one end of the cavity with a CW plane wave, we are able ...

Simulation of 2D Photonic Crystal With COMSOL Multiphysics® Software - new

Z. Liang[1], Z. Meng[2], K. Jie[1], Y. Benxi[1]
[1]Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
[2]Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China

This paper introduces the concept, research methods and application of photonic crystals. Starting from Maxwell's equations, the functional form of the TE mode and TM mode of the 2D crystal is derived. In 2D crystal, according to the functional forms, we conduct some stimulation about two-demensional photonic crystal with line-defect and dot-defect, forming some results as following: 1. ...

Enhanced Surface Plasmon Polariton Propagation Induced by Active Dielectrics - new

M. Mattheakis[1], C. Athanasopoulos[1], G. P. Tsironis[1]
[1]University of Crete, Heraklion, Greece

We present numerical simulations for the propagation of surface plasmon polaritons in a dielectric-metal-dielectric waveguide using COMSOL Multiphysics® software. We show that the use of an active dielectric with gain that compensates metal absorption losses enhances substantially plasmon propagation. Furthermore, the introduction of the active material induces, for a specific gain value, a ...

Antenna and Plasmonic Properties of Scanning Probe Tips at Optical and Terahertz Regimes - new

A. Haidary[1], P. Grütter[1], Y. Miyahara[1]
[1]Physics Department, McGill University, Montreal, QC, Canada

A wide variety of near-field optical phenomena such as apertureless near-field scanning microscopy (ANSM) at optical and terahertz (THz) regimes and surface enhanced Raman scattering relies on the electric field enhancement at the end of a sharp tip. Achieving and controlling this electric field enhancement is a key challenge for a wide range of applications such as surface modification, data ...

Quick Search