Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL News Magazine 2017

Near-Field FEM Simulations: A Vital Tool for Studying Silver-Based Plasmonic Systems

R. Asapu [1], S. W. Verbruggen [2], N. Claes [3], S. Bals [3], S. Denys [1], S. Lenaerts [1],
[1] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium
[2] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium; Center for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
[3] Department of Physics, EMAT Research Group, University of Antwerp, Antwerp, Belgium

Silver nanoparticles are valuable in the field of plasmonics since silver has a higher field enhancement factor compared to other metals that possess plasmonic properties. The plasmonic properties of silver nanoparticles can be finely tuned to the incident light wavelength through their size, shape and dielectric environment, and they have long-term stability. In this work, an ultrathin polymer ...

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

Z. Zheng
School of Electronic and Information Engineering, Beihang University, Beijing, China

Design and optimization of the nanophotonic devices are critical in realizing advanced photonic integrations in the future. COMSOL can be used for simulating various types of nanophotonic devices involving different materials and dimensions. This report talks about some recent work of Prof. Zheng’s team, including the simulation of dielectric photonic waveguides, optic fibers and surface plasmon ...

COMSOL Multiphysics® Software as a Metasurfaces Design Tool for Plasmonic-Based Flat Lenses

B. Adomanis [1], D. B. Burckel [2], M. Marciniak [1],
[1] Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
[2] Sandia National Laboratories, Albuquerque, NM, USA

Introduction: Flat lenses require precise control of a phase gradient across an interface, which is enabled through the application of engineered surfaces, such as Metasurfaces [1]. Periodic arrays of plasmonic antennas have been utilized to generate this desired phase gradient, which dictates the angle of “anomalous” refraction of the cross-polarized field scattered from a normal-incidence ...

Optical and Electrical Modeling of Three Dimensional Dye Sensitized Solar Cells

P. Guo[1]
[1]Northwestern University, Evanston, IL, USA

Dye sensitized solar cells (DSSCs) have received tremendous attention as alternative photon harvesting devices. While the sintered TiO2 nanoparticle network attached with dye molecules achieves efficient photon absorption, the electrons have to diffuse through the long TiO2 network to reach the contact, resulting in a high electron density and thus increased recombination. Extensive research ...

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the input and output coupling into the resonator. By pumping one end of the cavity with a CW plane wave, we are able ...

Full-Wave Analysis of Nanoscale Optical Trapping

E. Furlani, and A. Baev
The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, NY, USA

Plasmonic-based optical trapping is in its infancy and growing rapidly. Research in this area will significantly advance fundamental understanding in fields such as nanophotonics and biophotonics. Novel plasmonic trapping structures and systems can be designed and optimized using the COMSOL RF solver.   We present a study of plasmonicbased optical trapping of neutral sub-wavelength ...

Simulations of Negative Curvature Hollow-core Fiber - new

J. Zhang[1], Z. Wang[1], J. Chen[1]
[1]College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, China

COMSOL Multiphysics® software was used to simulate and analyze the transmission attenuation spectra of the negative curvature hollow-core fiber (NCHCF) over the wavelength from 2.7 μm to 4.2 μm. The effect of thickness of capillaries and the effect of the distance between the capillaries on confinement loss spectra were studied, which agreed well with the high-loss and low-loss bands predicted ...

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics

C. T. Nadovich [1],
[1] Lafayette College, Easton, PA, USA

The use of grating couplers to couple conventionally phased and polarized light near vertically in and out of optical slab or film waveguides [1] represents an attractive method to interface optical fiber to photonic ICs. Previously developed grating coupler designs use transversely uniform grating structures matched to conventional scalar fiber modes. The performance of these geometries can be ...

Design of Solar Thermal Dryers for 24-hour Food Drying Processes

F. S. Alleyne [1], R. R. Milczarek [1],
[1] Healthy Processed Foods Research Unit, U.S. Department of Agriculture, Albany, CA, USA

Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection process or material attributes that allow them to be selected as candidates in solar dryer designs. 1–7 ...

Scattering from ZnO Nanorods in Absorbing Perovskite Layer

S. Shital [1], V. Dutta [1],
[1] Indian Institute of Technology Delhi, New Delhi, India

Increased light scattering have been found to improve the short-circuit current of photovoltaic devices. In this paper we have tried to optimize the dimensions of ZnO nanorods to achieve this. Scattering efficiency of these nanorods was evaluated by solving Maxwell’s electromagnetic equation in the nanorods and surrounding perovskite using COMSOL Multiphysics software. For evaluation of ...