Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Partially Absorbing Biosensors

D. Kappe[1], A. Hütten[1]
[1]Bielefeld University, Bielefeld, Germany

Designing and constructing a lab-on-a-chip device poses a variety of questions. Transport of all required substances, detection of the analyte and its deposition on a sensor have to be incorporated. Different strategies have been developed to achieve good coverages of the sensor, like employing electric or magnetic gradients. On the basis of a ramp like structure, the binding of the analyte to a ...

Finite Element Evaluation of Surface Acoustic Wave Reflection and Scattering from Topographic Irregularities Comparable with the Wavelength

S. Yankin[1,2], S. Suchkov[2], S. Nikitov[2,3], B. Sveshnikov[2], I. Shatrova [2]
[1]Joint International Laboratory LICS/LEMAC, IEMN UMR CNRS 8520, EC Lille,Villeneuve d’Ascq, France
[2]Saratov State University, Saratov, Russia
[3]Institute of Radio-engineering and Electronics, Russian academy of Science, Moscow, Russia

Design of SAW devices needs the accurate study of the scattering fields, arising from the interaction of SAW with topographic irregularities. To solve this problem FE methods very perspective, because with its help one can take into account the actual geometry of the electrodes and reflectors. This work describes results of original time domain calculation of 2D SAW scattering fields in delay ...

Design Optimization of Piezoelectric Micro-machined Modal Gyroscope

Shambhu Singh[1], Dr. N N Sharma[1]
[1]Birla Institute of Technology and science, Pilani, Rajasthan, India

A solid state Piezoelectric Micro Machined Modal Gyroscope is a vibratory type of gyroscope which sense the motion by voltage induced due to Coriolis force. It utilizes natural frequency of the structure to maximize the displacements and hence maximizing the induced voltage signals for sensing.The mode suitable for gyroscopic motion is 9th mode, which was found to be vibrating at 350.217 kHz. A ...

DNA Interactions in Crowded Nanopores - new

K. Misiunas[1], N. Laohakunakorn[1], S. Ghosal[2], O. Otto[1], U. F. Keyser[1]
[1]University of Cambridge, Cambridge, UK
[2]Northwestern University, Evanston, IL, USA

The motion of DNA in crowded environments is a common theme in physics and biology. Examples include gel electrophoresis and the self-interaction of DNA within cells and viral capsids. Here we study the interaction of multiple DNA molecules within a nanopore by tethering the DNA to a bead held in a laser optical trap to produce a "molecular tug-of-war". We measure this tether force as a function ...

Design of High Performance Micromixer for Lab-On-Chip (LOC) Applications

K. Karthikeyan[1] , L. Sujatha[1]
[1]Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

This paper presents the design and simulation of micromixer for Lab-On-Chip (LOC) applications. There are two types of micromixers: one is an active micromixer and another one is a passive micromixer. This paper investigates microfluidic flow characterization and mixing rate of two fluids in a micro- channel. Understanding the microfluidic flow at the micro channel is a develop methods of mixing ...

Computational Simulation of Electrohydrodynamic Systems Pertaining to Micro and Nano scale Fluid Flow Phenomenon

M. Seiler[1], and B. Kirby[2]
[1]Department of Engineering Physics, Cornell
University, NY, USA
[2]Department of Mechanical Engineering, Cornell
University, NY, USA

Modeling of 3D AC electro-osmotic pumps is relevant to the creation of portable or implantable lab-on-a-chip devices for mm/s tunable fluid flows attainable with battery scale voltages. In this analysis using COMSOL Multiphysics we investigate the modeling challenges of computationally calculating systems of fluid flow phenomena governed by AC Electroosmosis in the micro and nano scale regimes.

Variable Capacitance And Pull-In Voltage Analysis Of Electrically Actuated Meander-Suspended Superconducting MEMS

N. AlCheikh[1], P. Xavier[1], J.M. Duchamp[1], C.H. Boucher[2], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Minatec, Grenoble, France
[2]Institute of Millimetric Radio Astronomy (IRAM), Grenoble, France

Variable capacitors between the fF and pF range are very interesting for high frequency applications like variable filters, resonators, etc. For radio astronomy applications variable capacitors, realized by electrostatically actuated, micromechanical Meanders-suspended bridges (MEMS) made of superconducting Niobium, have been measured to find C(V). A non plane capacitance behavior have been ...

Analysis of Electroosmotic Flow of Power-law Fluids in a Microchannel(1D)

K. SriNithin[1]
[1]IIT Kharagpur, Kharagpur, West Bengal, India

Electroosmotic flow of power-law fluids in a slit channel(1D) is analyzed. The governing equations are the Poisson–Boltzmann equation, the Cauchy momentum equation, Generalized Smoluchowski equation and the continuity equation are used to get shear stress, dynamic viscosity, and velocity distribution. Simulations are performed to examine the effects of ?H, flow behavior index, double layer ...

Study of Fluid and Mass Adsorption Model in the QCM-D Sensor for Characterization of Biomolecular Interaction

H.J. Kwon[1], C.K. Bradfield[1], B.T. Dodge[1], and G.S. Agoki[1]
[1]Department of Engineering and Computer Science, Andrews University, Berrien Springs, Michigan, USA

Increasing attention has been paid to application of the quartz crystal microbalance with dissipation (QCM-D) sensor for monitoring biomolecular interactions. This paper focuses on a practical application of protein-protein binding affinity measurement at low concentrations and minimal sample sizes (50-200 μl of 20-200 nM), which results in low signal measurement. A model simulating fluid ...

Nanoscale Structure Design in EM Fields Using COMSOL Multiphysics

J. Yoo[1], H. Soh[2], J. Choi[3], S. Song[4]
[1]Department of Mechanical Engineering, Yonsei University, Korea
[2]Hyundai Motor Co., Korea
[3]Samsung Electronics Co., Ltd., Korea
[4]Mando Co., Korea

Nanoscale structural analysis and design is presented. All the simulations are carried out using a finite element solver and optimization is performed using parameter and topology optimization schemes. It is concluded that COMSOL is effective for analysis and design of nanoscale structure design in electromagnetic field and it may be combined with several optimization methods to improve system ...