Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL News Magazine 2017

Void Shape Evolution of Silicon Simulation in COMSOL Multiphysics®

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of a trench patterned silicon substrate results in diverse cavities by varying initial conditions. The size and the arrangement of the initial trenches are decisive for the transformation process besides the annealing conditions which are, in fact, time and temperature, and the existing pressure values. The prediction of the shape evolution depending on different ...

Modeling Flow of Magnetorheological Fluid through a Micro-channel

N.M. Bruno[1], C. Ciocanel[1] and A. Kipple[2]
[1]Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA
[2]Dept. of Electrical Engineering and Computer Sciences, Northern Arizona University, Flagstaff, Arizona, USA

This paper presents the approach taken through the utilization of COMSOL Multiphysics 3.5a, to develop a model that simulates the flow of a magnetorheological (MR) fluid through a micro-channel. The model was developed as an aid in the analysis of a micropump that produces flow by means of displacement of a MR fluid slug within a microchannel.

Electric Field Density Distribution for Cochlear Implant Electrodes

N.S. Lawand[1], J. van Driel[2], P.J. French[2]
[1]Electronic Instrumentation Laboratory (EILab), Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology, Delft, The Netherlands
[2]Delft University of Technology, Delft, The Netherlands

Cochlear Implants are implantable devices which bypasses the non-functional inner ear and directly stimulates the hearing nerve with electric currents thus enabling deaf people to experience sound again. Implant electrode array design is limited in electrode count, due to their large size in accordance to scala tympani (ST) with restrictions for deeper insertion in ST thus depriving access to ...

3D Simulation of an Acceleration Sensor with Self-sufficient Energy Supply

L. Weber [1], L. Fromme [1], D. Zielke [2],
[1] University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany
[2] University of Applied Sciences Bielefeld, Institute BIFAM, Bielefeld, Germany

Piezo buzzers, made of piezoelectric material glued on a brass plate, are usually used as signaler, but the buzzer can also be used to convert mechanical into electrical energy. If acceleration influences the buzzer, the structure is bent by its mass and a voltage can be measured between the connection pads. With a small, additional weight on the buzzer the useable electrical energy becomes ...

Multiphysics Modeling of Nanoparticle Detection - Current Status and Collaboration Sought

D. Krizaj[1], I. Iskra[2], Z. Topcagic[1], and M. Remskar[2]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
[2]Institut Jozef Stefan, Ljubljana, Slovenia

We are developing nanoparticle detector for airborn particles. The detection principle is based on condensation of nanoparticles forming micron sized water droplets and detection of the droplets by a capacitive type nanodetector. We have successfully performed some experimental evaluations of the detection principle and are in the stage of optimization of several parts of the system. As ...

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Simulation of an AlN Thin Film Resonator for High Sensitivity Mass Sensors

M. Maitra [1], H. B. Nemade [1], S. Kundu [1],
[1] Indian Institute of Technology Guwahati, Guwahati, Assam, India

The objective of this paper is to show the simulation of a piezoelectric thin film device and its application as a sensor. Piezoelectric aluminum nitride thin film clamped at two ends is simulated using COMSOL Multiphysics software. The device consists of the piezoelectric thin film suspended on a cavity etched on a silicon substrate. Two metal electrodes are placed at the two fixed sides of the ...

Simulation of MEMS Based Pressure Sensor for Diagnosing Sleep Disorders

J. Vijitha[1], S. S. Priya[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Sleep apnea is a type of sleep disorder characterized by pauses in breathing or instances of shallow or infrequent breathing during sleep. There is a need to diagnose sleep apnea since it leads to fluctuations in the oxygen level that in turn affect the heart rate and blood pressure. In order to detect this disorder, a Micro Electro Mechanical System (MEMS) based piezoelectric pressure sensor ...

Janus 颗粒自驱运动的数值模拟

崔海航 [1], 王雷磊 [1], 谭晓君 [1],
[1] 西安建筑科技大学,西安,陕西,中国

Janus 颗粒是由物理或化学性质不同的两部分所构成的颗粒的总称。由于其结构的特殊性以及自驱动特性使其在MEMS、药物传输等领域有着潜在的应用价值。本文基于COMSOL Mutiphysics® 4.3a 多物理场耦合模拟平台对不同形状的 Pt-SiO2 型 Janus 颗粒的在不同浓度 H2O2 溶液中的自扩散泳动进行了数值模拟,并进一步研究模拟了球形 Janus 颗粒的近壁面运动。

Simulation of Silicon Nanodevices at Cryogenic Temperatures for Quantum Computing

F. A. Mohiyaddin [1], F. G. Curtis [1], M. N. Ericson [1], T. S. Humble [1],
[1] Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Electronic devices operating at cryogenic temperatures are critical for a wide variety of applications including quantum computing, space, medicine and fundamental research [1]. The design of these devices requires accurate physical modeling of the electric fields, currents, conduction band energies and electron densities at low temperature. While there are several commercial modeling platforms ...