See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Heat Transfer and Phase Changex

Modeling of Transport Phenomena in Metal Foaming

B. Chinè[1], M. Monno[2]
[1]Laboratorio MUSP Piacenza, Italy; ITCR, Esc. Ciencia e Ing. Materiales, Cartago, Costa Rica
[2]Laboratorio MUSP, Piacenza, Italy; Politecnico di Milano, Dip. Meccanica, Milano, Italy

Metal foams are interesting materials with many potential applications in engineering. Foamed metals or alloys include gas voids in the material structure with the real possibility to modify ad hoc their physical properties. Following our previous efforts aimed to simulate and study the ... Read More

Modeling of Energy Efficient Continuous Sterilisation of ABP from Food Wastes

S. Dalrymple[1], R. Heslop[1]
[1]C-Tech Innovation Ltd. , Capenhurst, United Kingdom

Ohmic heating is a volumetric heating technology which can effectively process almost any pumpable fluid with extremely high energy efficiency (>95%). This is particularly useful for very thick fluids, those that burn on to hot surfaces and those with high solids content which would ... Read More

Modeling Deep-Bed Grain Drying Using COMSOL Multiphysics®

J.G. Pieters[1], R. ElGamal[1], F. Ronsse[1]
[1]Faculty of Bioscience Engineering, Department of Biosystems Engineering, Ghent, Belgium

CFD simulations were carried out to predict the convective heat and mass transfer coefficients in the rice bed, and correlations were developed for the convective heat and mass transfer coefficients as a function of drying air flow rate. The developed correlations were used to extend the ... Read More

Integrated Solar Thermal Collector with Heat Storage

A.R. Sánchez-Guitard[1], E. Ruiz-Reina[1]
[1]University of Málaga, Málaga, Spain

In this work, we study the design of a new integrated system for Solar Water Heating that combines the solar thermal energy collection (primary circuit) with the heat storage (secondary circuit) into the same device. We have performed different finite element method simulations using ... Read More

Heat-Accumulation Stoves: Numerical Simulations of Two Twisted Conduit Configurations

D. Rossi[1], P. Scotton[2], M. Barberi[3]
[1]Università degli Studi di Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[2]Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[3]Barberi Stufe LTD, Trento, TN, Italy

An important part of the society considers an increased share of renewable energies as an integral part of a strategy towards a sustainable future. As far as heat supply is concerned, this can be achieved using solar thermal collectors, borehole heat exchangers or trough the combustion ... Read More

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models ... Read More

COMSOL Multiphysics® Simulation Integrated into Genetic Optimization

V. Longinotti[1], S. Di Marco[1], S. Pistilli[1], F. Costa[1], M. Giusti[1], G. Gammariello[1], I. Gison[1], G. Latessa[1,2], D. Mascolo[2], A. Buosciolo[1]
[1]Altran Italia, Roma, Italy
[2]Consorzio DeltaTi Research, Milano, Italy

The main topic of this paper is the development of an innovative tool that can be applied in a wide range of complex problems, to simulate, optimize and improve system design especially when dealing with huge numbers of parameters and constraints. The new methodology is obtained by ... Read More

Comparing Different Approaches for Moisture Transfer Inside Constructions with Air Gaps

L. Nespoli[1], M. Bianchi Janetti[2], F. Ochs[2]
[1]Politecnico di Milano, Milan, Italy
[2]University of Innsbruck, Innsbruck, Austria

A model for the conjugate simulation of heat and moisture transfer inside porous materials and fluid domains is implemented in COMSOL Multiphysics®. The results of this model are compared with those obtained through a simplified approach: the line-source approach. The models are both ... Read More

Combustion Study of DDGS Char from Steam-O2 Blown CFB Gasifier and Charcoal Using Thermogravimetric Analysis and COMSOL Multiphysics®

X. Meng[1], W. de Jong[1], A.H.M. Verkooijjen[1]
[1]TU Delft, Delft, The Netherlands

To obtain reliable kinetic data for the modeling of Dried Distiller’s grains with Soluble (DDGS) gasification using a 100 kWth steam-O2 blown circulating fluidized bed (CFB) gasifier, the combustion behavior of partially gasified residual DDGS char and pure charcoal as a comparison has ... Read More

Oscillatory Thermal Response Test (OTRT) – An Advanced Method for Gaining Thermal Properties of the Subsurface

P. Oberdorfer[1]
[1]Georg-August-Universität Göttingen, Göttingen, Germany

Thermal Response Tests (TRTs) are the state-of-the-art method to obtain the thermal conductivity of the subsurface in the nearby ambience of a borehole heat exchanger (BHE). The results of TRTs are used to determine the necessary depth of the borehole and to make long time predictions ... Read More