Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

3D Modelling of Flow Dynamics in Packed Beds of Low Aspect Ratio - new

F. Alzahrani[1], F. Aiouache[1]
[1]Engineering Department, Lancaster University, Lancaster, UK

This work used the 3D CFD modeling to investigate non-uniform deactivation in packed bed reactors of low aspect ratios under steady state and dynamic operations. In order to explore the effects of condition of instability on local deactivation, detailed knowledge of flow dynamics (i.e. local structure of the packed bed, pressure drops and interstitial flow in the void space), heat and mass rate ...

Fluid-Thermal Analysis of an Inverter with Air Cooling

R. V. Arimilli[1], A. H. Nejad[1], K. Ekici[1]
[1]The University of Tennessee, Knoxville, TN, USA

A new simple air-cooled inverter design is numerically investigated using COMSOL Multiphysics® software. The thermal-fluid analysis is based on a three-dimensional conjugate heat transfer model in which the flow field is assumed to be laminar. A rigorous mesh convergence was performed to ensure that the overall energy balance error is within engineering accuracy while the computational cost is ...

A Model of Heat Transfer in Metal Foaming

Bruno Chinè [1], Valerio Mussi [2], Michele Monno [3], Andrea Rossi [2],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2] Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[3] Dipartimento di Meccanica, Politecnico di Milano, Milano, Italy

Metal foams are interesting materials with many potential applications. Foamed metals or alloys include gas voids in the material structure and therefore the density is introduced as a new variable, with the real possibility to modify ad hoc their physical properties. In the indirect foaming process carried out in a furnace, simultaneous mass, momentum and energy transfer between three phases, ...

Simulation and Validation of Pan Evaporation Rates Using COMSOL Multiphysics® Software

L. J. Matel [1]
[1] Green Streets Infrastructure LLC, Seattle, WA, USA

The four foot diameter class A evaporation pan is used by the scientific community as the standard for determining evaporation rates for a number of purposes. The COMSOL Multiphysics® software provides the necessary tools to adequately develop synthetic estimates of evaporation values for input into hydrologic simulation models and other earth science applications. This paper presents ...

Hydrodynamic and Thermal Modeling in a Deep Geothermal Aquifer, Faulted Sedimentary Basin, France

E. Malcuit[1], A.L. Gille[1]
[1]CFG Services, Orléans, France

Within projects of geothermal energy, we need hydrodynamic and thermal modeling to forecast the impacts of geothermal deep wells on existing wells. In case of pumping and reinjection of the geothermal fluid in a deep groundwater reservoir, located in a sedimentary basin with lateral and vertical lithology variations and major faults, it is fundamental to understand the behaviour of the ...

Modelling Reservoir Stimulation in Enhanced Geothermal Systems

G. Perillo[1], G. De Natale[2], M.G. Di Giuseppe[2], A. Troiano[2], C. Troise[2]
[1]University of Naples Parthenope, Italy
[2]INGV - Osservatorio Vesuviano, Naples, Italy

Fluid injection in deep wells is a basic procedure in geothermal permeability enhancement. The retrieved changes of Pressure and Temperature are subsequently considered as sources of incremental stress and strain changes, using the elastic model from COMSOL Multiphysics®, which are then converted to Coulomb stress changes on favoured faults, taking into account also the background regional ...

Multi-Dimensional Simulation of Flows Inside Mono and Polydisperse Packed Beds

R.G. Schunk [1], J. C. Knox [1], K. Son [1, 2], R. F. Coker [1],
[1] NASA Marshall Space Flight Center, Huntsville, AL, USA
[2] Purdue University, West Lafayette, IN, USA

An analysis to quantify the flow inside the narrow channels of an ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) adsorbent bed is presented. The CDRA contains two pelletized adsorbent beds to remove CO2 respired by the crew. Heaters and associated fins inside the adsorbent beds form many small parallel channels which are rectangular in cross section. The channels are ...

3D Unsteady CFD with Heat and Mass Transfer Simulations of Solar Adsorption Cooling System for Buildings

W. Yaici [1], E. Entchev [1], J. Ranisau [1],
[1] CanmetENERGY Research Centre, Natural Resources Canada, Ottawa, ON, Canada

In recent years, extensive attention has been paid on the application of solar cooling for buildings. Amongst cooling technologies, low-temperature solar-driven adsorption cooling systems are emerging viable alternatives to electricity-driven vapour compression systems. They seem to have a promising market potential. The greatest challenge for their widespread use is the reduced thermal and mass ...

Modeling of the Bread Baking Process Using Moving Boundary and Arbitrary-Lagrangian-Eulerian (ALE) Approaches

C. Anandharamakrishnan, N. Chhanwal, P. Karthik, D. Indrani, and K.S.M.S. Raghavarao
Central Food Technological Research Institute, Mysore, Karnataka, India

Bread baking is a complex process where various physiochemical and biological transformations take place simultaneously. A two dimensional model was developed for the bread baking process taking into account of volume expansion, heat and mass transfer processes. Phase change and evaporation-condensation mechanism were incorporated by defining thermo-physical properties of bread as a function of ...

Thermal Modelling of a Solar Water Collector Highly Building Integrated

F. Motte, and C. Cristofari
University of Corsica
Laboratory of Vignola
Ajaccio
Corsica, France

A new concept of solar water collector, highly building integrated has been developed and patented. This collector is hidden into a drainpipe and is totally invisible from the ground level. The drainpipe keeps its water evacuation function. Each installation is composed of several modules serial connected. An experimental wall has been build to test the thermal performances of the instalation ...