Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Convective Cooling of Electronic Components - new

J. S. Crompton[1], H. Singh[1], K. Koppenhoefer[1]
[1]AltaSim Technologies, LLC, Columbus, OH, USA

In response to continued miniaturization and increased multi-functionality of electronic circuits, the number of integrated circuit (IC) packages on the circuit board continues to increase. As a consequence the operating power density increases and significant increases in the operating temperature of devices result. To maintain operation and long term performance device temperature must be ...

Modeling Thermal Effects of Battery Cells Inside Electric Vehicle Battery Packs

M. R. Khan [1], S. K. Kær [1],
[1] Department of Energy Technology, Aalborg University, Aalborg, Denmark

The poster presents a methodology to account for thermal effects on battery cells to improve the typical thermal performances in a pack through heating calculations generally performed under the operating condition assumption. The aim is to analyze the issues based on battery thermo-physical characteristics and their impact on the electrical state of battery cells(Khan, Mulder et al. 2013, Khan, ...

Finite Element Analysis of Thermal Fatigue in Thermal Barrier Coatings

U. Bardi[1], C. Borri[1], A. Fossati[1], A. Lavacchi[1], and I. Perissi[1]
[1]Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, FI, Italy

A Finite element model of plasma sprayed TBC’s was developed to estimate the stress induced by thermal cycling experiments. A heat transfer analysis was performed to evaluate the temperature distribution on the specimen during the cooling under an impinging air jet; temperature measurements performed with an infrared pyrometer on the cooled samples show good agreement with the evaluated ...

Investigation of Thermal Contact Gas Gap Conductance Using COMSOL Multiphysics®

J. D. Freels[1], P. K. Jain[1], C. J. Hurt[2]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]The University of Tennessee, Knoxville, TN, USA

Our safety analysis group in the Research Reactors Division of Oak Ridge National Laboratory supports a project to investigate the production of Pu-238 isotope for missions of deep space travel in the High Flux Research Reactor. COMSOL Multiphysics® has been used to support this activity in the past, and we have successfully installed and irradiated three different target designs. The gas-gap ...

A COMSOL Multiphysics® Software Interface with GEMS3K for Modeling Reactive Transport (Geo)Chemical Processes

O. B. Isgor [1], V. J. Azad [1],
[1] Oregon State University, Corvallis, OR, USA

This paper presents a generic interface for reactive transport process modeling that was developed between the COMSOL Multiphysics® software Java API (transport model) and GEMS3K (reaction model). While the transport of different species, kinetics of dissolution/precipitation, system potentials, fluid and gas flow, etc. can be modeled in a complex chemical system with COMSOL® software, the ...

Finite Element Method based Investigation of IPMSM Losses

M. Schmidtner [1], C. Markgraf [1], A. Frey [1],
[1] University of Applied Sciences, Augsburg, Bavaria, Germany

INTRODUCTION: This paper investigates the design of IPMSM as drive motor for an electric race car in the competition called Formula Student. A key parameter for electrical motor is the power density which is very important for the performance of such race vehicles [1] to keep the overall mass small at high power. Furthermore, to run the motor at high power and to prevent it from overheating due ...

Numerical Modeling of Resistance Welding Process in Joining of Thermoplastic Composite Materials Using COMSOL Multiphysics®

R. Carbone[1] and A. Langella[1]
[1]Material and Production Engineering Department, Università degli Studi di Napoli Federico II, Napoli, Italy

This paper deals of a technology involved in the joining of thermoplastic composites, the resistance welding technology. This process takes advantage in the repeatable melting process for the thermoplastic resins. The process was numerically modeled to study the effect of the two main process parameters, the electric power density applied to the heating elements and the exposure time at the ...

Heat-Accumulation Stoves: Numerical Simulations of Two Twisted Conduit Configurations

D. Rossi[1], P. Scotton[2], M. Barberi[3]
[1]Università degli Studi di Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[2]Padova, Dipartimento di Geoscienze, Padova, PD, Italy
[3]Barberi Stufe LTD, Trento, TN, Italy

An important part of the society considers an increased share of renewable energies as an integral part of a strategy towards a sustainable future. As far as heat supply is concerned, this can be achieved using solar thermal collectors, borehole heat exchangers or trough the combustion of biomass. This article shows two applications of two configurations of twisted conduit inside the external ...

Use of COMSOL Multiphysics® for IAQ Monitoring in Cleanrooms - new

G. Petrone[1], C. Balocco[2]
[1]BE CAE & Test, Catania, Italy
[2]Department of Industrial Engineering, University of Firenze, Firenze, Italy

High levels of Indoor Air Quality (IAQ) in Operating Theatres (OT) is an important issue in order to contribute in prevention of Surgical Site Infections (SSI). Despite of specific plant layouts are applied for OT ventilation (e.g. unidirectional flow), the effective use conditions can heavily modify the design microclimate and air quality levels. Medical staff presence and movements and sliding ...

Passive Thermal Control for Window Insulation - new

E. Konroyd-Bolden[1], Dr. Z. Liao[1]
[1]Department of Architectural Science, Ryerson University, Toronto, ON, Canada

A requirement of the building envelope is to act as environmental separator. Energy is one component that we sometimes wish to control. How can this yield passive benefits such as solar heating? This research focuses on control of thermal radiation energy, and the role windows play as transfer medium between indoor and outdoor environments. A novel concept for passively controlling solar ...