Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using Temperature Signals to Estimate Geometry Parameters in Fractured Geothermal Reservoirs

F. Maier[1], P. Oberdorfer[1], I. Kocabas[2], I. Ghergut[1], M. Sauter[1]
[1]Dpt. Applied Geology, Center of Geosciences, Georg-August-University, Göttingen, Germany
[2]Petroleum and Natural Gas Engineering Department Batman, Batman University, Batman, Turkey

We compare the output of 2D single fracture models as well as analytical solutions of the problem. The temperature signal is evaluated with the heat transfer mode while the flow field is assumed to exhibit Darcy flow everywhere. The problem is time-dependent so we have to take into account a change in the boundary conditions from a Dirichlet to a Neumann condition which is activated at the time ...

Thermo-Mechanical Analysis of Composite Material Exposed to Fire

A. Davidy[1]
[1]IMI, Ramat Hasharon, Israel

This paper presents thermo-mechanical models for predicting the strength of polymer laminates loaded in tension or compression exposed to one-sided radiant heating by fire. The first part is the fire simulation where the FDS model is utilized. The FDS model generates a solution of several state variables, such as pressure, temperature, heat, velocity vector. In the second part, COMSOL heat ...

Thermo-Fluid Dynamics FEM Simulation of Advanced Water Cold Plates for Power Electronics

N. Delmonte[1], F. Giuliani[1], P. Cova[1]
[1]Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Parma, Parma, Italy

Introduction: Power electronic converters such as those for High Energy Physics Experiments (HEPEs) must operate in thermally hostile environment. Heat generated by electronics components must be conveniently dissipated to ensure electrical performances and improve reliability. Due to the high power density, the presence of closed environments, and the requirement of non-thermal interaction with ...

Modeling and Analysis of a Direct Geothermal Heat Pump (DX): Part II-Modeling of Water-Refrigerant Exchanger

J. Fannou[1], C. Rouseau[1], L. Lamarche[1], S. Kajl[1]
[1]École de Technologie Supérieure, Montréal, Canada

In this section, we simulate the heat exchanger system in one dimension characterized by two coaxial tubes with ribbed inner tube using the equations of conservation of mass, conservation of momentum and energy. The COMSOL PDE interface is used to simulate the monophasic and biphasic flow of refrigerant R22 (Chlorodifluoromethane). Heat transfer in waterand inner wall of the exchanger are modeled ...

Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases

D. Rossi[1], P. Scotton[1]
[1]University of Padova, Department of Geosciences, Padova, Italy

The research aims to clarify some aspects of the thermo-fluid dynamics of woody biomass flue gas, within the twisted conduit inside the heat accumulation stoves, and exposes also some analysis about the heat transport and heat exchange processes. The high temperature flue gas flows in the conduit, releasing heat to the refractory. The heat stored in the refractory is then released to the ...

Multiphysics and Simulation of MEMS based Bolometer for Detecting the Radiations in Nuclear Power Plants

K. Umapathi[1], S. Swetha[2], K. Ranjitha[2], K. Vinodh[2], K. Deebiga[1], R. Harisudarsan[1]
[1]United Institute of Technology, Coimbatore, TamilNadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

High performance micro sensors are important to detecting special nuclear materials radiations in different fields to save the globe. This paper is mainly focused on to develop a MEMS based bolometer for detecting the nuclear radiation to provide the high security in Nuclear power Plants. A thermally sensitive micro metal plate is designed and placed on a substrate through micro thermal link. The ...

Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

A. Travis[1], K. Ekici[1], J. Freels[2]
[1]The University of Tennessee, Knoxville, TN, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model’s domain consists of a three-dimensional fuel plate and a two-dimensional coolant channel slice. In simplifying the coolant channel, the computational cost and solution time are both ...

Computer-aided Design of the Heating Section of a Continuous Kheer (Rice Pudding)-making Machine

S. Kadam[1], T. Gulati[2], A. Datta[1]
[1]Indian Institute of Technology, Kharagpur, India
[2]Cornell University, Ithaca, NY, USA

Kheer is a popular Indian dairy dessert prepared from concentrating milk with simultaneous cooking of rice grains. Conventional methods of preparing kheer have limited its mechanized production. Therefore, a conceptual design of continuous kheer-making machine has been prepared which among other components consists of a heating section for cooking kheer. The present study investigates the CFD ...

Several Benchmarks for Heat Transfer Problems in COMSOL Multiphysics®

S. Titarenko[1]
[1]University of Leeds, Leeds, United Kingdom

Nowadays all branches in modern science and industry tend to solve ever complicating problems. As the result the computational time increases considerably and it become very important to reduce the processing time and use available resources more efficiently. Parallelizing problem proves itself as efficient way to overcome the described problem. In the poster we compare different methods of ...

Study of Supercritical Coal Fired Power Plant Dynamic Responses for Grid Code Compliance - new

A. Gil-Garcia[1], I. Kings[1], B. Al-Duri[1]
[1]University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, UK

In clean coal technologies, improving energy conversion efficiency is one of the most important directions. Compared to traditional subcritical power plants, pressure-increased supercritical power plants improve the plant energy efficiency from 35% up to 45%. This work presents a study of the thermodynamic behaviour of the water cycle in coal-fired boilers in response to the changes in energy ...

Quick Search