Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Sample Preconcentration in Channels with Nonuniform Surface Charge and Thick Electric Double Layers

A. Eden [1], C. McCallum [1], B. Storey [2], C. D. Meinhart [1], S. Pennathur [1],
[1] University of California Santa Barbara, Santa Barbara, CA, USA
[2] Olin College, Needham, MA, USA

We present a novel method for concentrating and focusing small analytes by taking advantage of the nonuniform ion distributions produced by thick electric double layers (EDLs) in nanochannels with heterogeneous surface charge. Specifically, we apply a voltage bias to a gate electrode embedded within the channel wall, tuning the surface charge in a region of the channel and subsequently altering ...

Optimal Thermal Design of Converged-Diverged Microchannel Heat Sinks for High Heat Flux Applications

D. Chakravarthii [1], S. Subramani [1], M. Devarajan [1],
[1] Univeristy of Science Malaysia (USM), Georgetown, Penang, Malaysia

With the advancements in aerospace technology, micro-electromechanical systems, hybrid data centres and microfluidics, the miniature size electronic chips in such applications are need of the century. The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of devices. Microchannel heat sinks are efficient method to dissipate heat when the ...

Geometric Optimization of Micromixers

M. Jain[1], A. Rao[1], K. Nandakumar[1]
[1]Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

The performance of a homogeneous T-mixer can be enhanced significantly by the stimulation of secondary/ transverse flows in the microchannel. Various mixing mechanisms are reported for enhancing micromixing performance such as grooves at the channel bottom, heterogeneous charge patterns etc. Most of these micromixers are studied with respect to planar geometric parameters such as groove width, ...

Pore-Scale Simulation of Two-Phase Flow with Heat Transfer Through Dual-Permeability Porous Medium

H.A. Akhlaghi Amiri[1], A.A. Hamouda[1]
[1]University of Stavanger, Stavanger, Rogaland, Norway

This paper addresses one of the major challenges in water-flooded oil reservoirs, which is early water breakthrough due to the presence of high permeable layers in the media. COMSOL Multiphysics is used to model two phase (water and oil) flow in dual-permeability porous medium at micro-scales. The heat transfer module is coupled with the laminar two-phase flow interface, because temperature ...

3D Modelling of Flow Dynamics in Packed Beds of Low Aspect Ratio - new

F. Alzahrani[1], F. Aiouache[1]
[1]Engineering Department, Lancaster University, Lancaster, UK

This work used the 3D CFD modeling to investigate non-uniform deactivation in packed bed reactors of low aspect ratios under steady state and dynamic operations. In order to explore the effects of condition of instability on local deactivation, detailed knowledge of flow dynamics (i.e. local structure of the packed bed, pressure drops and interstitial flow in the void space), heat and mass rate ...

Drag Fluctuations of a Fully Deployed Flow Actuator Embedded Inside Turbulent Boundary Layer Flow - new

Dr. A. Elzawawy[1]
[1]Engineering & Technology Department, Vaughn College of Aeronautics & Technology, Flushing, NY, USA

Introduction: In this work, a CFD model of 2D flow around a fully deployed flow actuator was developed using COMSOL Multiphysics® software and the CFD Module. The results of COMSOL modeling is also compared with the experimental data of the same dimensions actuator. The 100mmX2mm rectangular actuator is placed inside a turbulent boundary layer flow as shown in Figure 1. The experiments [1], [2 ...

A Research of Electro-thermal Coupling Model for Lithium-ion Battery with Multiphysics in COMSOL Multiphysics®

戴海峰 [1], 许阳 [1], 朱建功 [1],
[1] 同济大学,上海,中国

A new method is proposed to study battery thermal behavior under nature convection condition, especially focusing on temperature rising and inhomogeneity of battery. Using porous electrode theory, an electrochemical and homogenization heat source thermal coupling model and an electrochemical-distributed heat source thermal coupling model are established. In the meanwhile, to improve inhomogenity ...

Computational Analysis of Hydrodynamics and Light Distribution in Algal Photo-Bioreactors

V. Loomba [1], E. von Lieres [1], G. Huber [1],
[1] Forschungszentrum Jülich, Jülich, Germany

Microalgae can be directly used in health food or as biofilters for waste water treatment. They also have numerous commercial applications in cosmetics, aquaculture and chemical industry as a source of highly valuable molecules, e.g., polyunsaturated fatty acids, and they are increasingly recognized as a promising source for biodiesel production. To realize the full potential of microalgae, ...

Underwater Flow Noise Simulation

S. H. Abadi [1], A. T. Lim [1],
[1] University of Washington, Bothell, WA, USA

Underwater acoustics is an area that studies the sound propagation in water and the interactions with other objects and water boundaries. There are many technologies available for acoustic exploration of the ocean. Underwater vehicles are robots used in ocean sciences that travel underwater autonomously and can tow a hydrophone as a mobile sensor to record sound. The turbulent flow induced by ...

Atmospheric Icing of Transmission Line Conductor Bundles

T. Wagner[1], and U. Peil[2]
[1]International Graduate School of Risk Management of Natural and Civilization Hazards on Buildings and Infrastructure, Braunschweig, Germany
[2]Institute of Steel Structures, Technical University Braunschweig, Braunschweig, Germany

Hazardous for the transmission lines is not only the static ice load, but also the aerodynamic instability of iced cables. It can lead to large amplitude oscillations at low frequencies. Also,  twisting due to asymmetrical iced cables may increase the fatigue rate. In extreme events, atmospheric icing can cause severe damage on towers and power lines, resulting in extensive electricity ...