Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Image Based-Mesh Generation for Realistic Simulation of theTranscranial Current Stimulation

R. Said[1], R. Cotton[1], P. Young[1], A. Datta[2], M. Elwassif[2] , and M. Bikson[2]
[1] Simpleware Ltd, Exeter, Devon, UK
[2] Department of Biomedical Eng., The City College of New York, New York, NY, USA

This paper will discuss the comprehensive solution adopted for converting the 3D digital/medical images directly into the computational model. The workflow using Simpleware Software – ScanIP and + ScanFE – will be illustrated including the option for directly exporting fully compatible models to COMSOL Multiphysics. The extra functionality that allows introduction, positioning and ...

Full-Wave Simulation of an Optofluidic Transmission-Mode Biosensor

E. P. Furlani[1], N. M. Litchinitse[2], and R. Biswas[2]

[1]The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, Buffalo, New York, USA
[2]Department of Electrical Engineering, The State University of New York at Buffalo,Buffalo, New York, USA

We present a study of an optofluidic biosensor. The sensor operates in a transmission mode wherein detection is based on a shift in the transmission spectrum caused by the contrast in refractive index between the carrier fluid and the target biomaterial. We study the behavior of the sensor using 2D full-wave electromagnetic analysis, and perform parametric studies of sensitivity as a function ...

Numerical Homogenization in Multi-scale Models of Musculoskeletal Mineralized Tissues

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Darmstadt, Germany
[2]Laboratoire d’Imagerie Paramétrique, UPMC, Paris, France
[3]Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany

Musculoskeletal mineralized tissues (MMTs), e.g. bone, are hierarchical composite materials. Their effective elastic properties at different scales are of interest for computational studies of the MMT’s response to mechanical loading but also to realistically simulate implant osseointegration. We combine multi-scale and multi-modal experimental techniques with mathematical modelling of MMTs ...

Can Oscillatory Convection Accelerate Signal Propagation in Simple Epithelium?

M. Nebyla[1], M. Pribyl[1]
[1]Institute of Chemical Technology, Prague, Department of Chemical Engineering, Prague, Czech Republic

We introduce a mathematical model of signal transmission in simple epithelial layers. The mathematical model consists of reaction-transport equations for extracellular ligands, cellular receptors, ligand-receptor complexes and a ligand releasing protease. We consider diffusion and nonstationary convective transport of protein ligands in the extracellular space. The study was carried out using ...

Microwave Exposure System for In Vitro and In Vivo Studies - new

C. Nadovich[1, 2], W. D. Jemison[2], J. A. Stoute[3], C. Spadafora[4]
[1]Lafayette College, Easton, PA, USA
[2]Clarkson University, Potsdam, NY, USA
[3]Pennsylvania State University, Hershey, PA, USA
[4]INDICASAT AIP, Ciudad del Saber, Panama

A computer controlled microwave exposure system and specialized applicators were constructed for the purpose of facilitating accurate observations of microwave radiation effects on uninfected and infected biological tissue in vitro and in vivo under different electromagnetic modalities and exposure configuration. To address diverse requirements, three different applicators were developed: a ...

Performance of a Miniaturized Hydrocyclone for the Isolation of Schistosoma Mansoni Eggs - new

C. Soares[1], N. Padoin[1], F. Montalvo[2], D. Cobra[2]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil
[2]CERTI Foundation, Florianópolis, SC, Brazil

Schistosoma mansoni parasites affect million people worldwide. The intensity of the infection can be evaluated by the number of eggs present in the stool of an infected individual. The application of the traditional methods has been regarded as impractical in developing areas and there is a continuous search for new techniques. In face of this scenario, a new method of diagnosis was explored in ...

Numerical Investigation of a Time-dependent Magnetic Actuation Technique for Tagging Biomolecules with Magnetic Nanoparticles in a Microfluidic System

A. Munir, J. Wang, Z. Zhu, and H.S. Zhou
Worcester Polytechnic Institute, Worcester, MA, USA

The magnetic body forces that act on mono-dispersed magnetic nanoparticles (MNPs) tagged biomolecules in a microfluidic system can be efficiently used in various applications that involve separation and detection including DNA and protein analysis, bio-defense, drug delivery, and pharmaceutical development. In this work, we report an FEM model to demonstrate a novel method of tagging ...

Computer Simulation Of Haematopoietic Stem Cells Migration Using COMSOL Multiphysics

G. Bencheva
Institute for information and communication technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria

Various haematological diseases, including leukaemia, are characterized by abnormal production of particular blood cells. Two important properties of haematopoietic stem cells (HSCs) are used in their therapy, namely: a) rapid migratory activity and ability to \'\'home\'\' to their niche in the bone marrow; b) high self-renewal and differentiation capacity, responsible for the production and ...

Polymer Compositional Profile Controls By-Product Fate from Erodible Endovascular Scaffolds

T. Shazly, and J. Ferdous
Biomedical Eng., Mechanical Eng. Dept.
University of South Carolina
Columbia, SC

Erodible polymeric scaffolds can mitigate long-term risks associated with permanent implants currently used to treat ischemic artery disease. However, safe deployment of erodible scaffolds is predicated on understanding the interactions between evolved material by-products and local biological tissues. We developed an integrated computational model of polymeric scaffold degradation, by ...

Finite Element Analysis of Muscular Contractions from DC Pulses in the Liver

G. Long, D. Plescia, and P. Shires
Ethicon Endo-Surgery, Cincinnati, OH, USA

Thermal ablation of malignant tumors has been conducted in patients who are not candidates for surgery for more than ten years. Recently it has been shown that low energy DC pulses can cause cell necrosis. An undesirable characteristic of DC pulses in-vivo is the stimulation of skeletal muscle. The intensity of the contraction depends in part on the duration and height of the pulse. Through the ...