Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Modeling of Cellular Arrays Using Periodic Minimal Surfaces – A Drug and Gene Delivery Application

J.I. Rey, A.J. Llewellyn, R.J. Connolly, J.P. Jimenez, A.M. Hoff, and R.A. Gilbert
University of South Florida, Tampa, FL, USA

Minimal surfaces are found in nature from crystalline structures to biological nano and micro structures such as biomembranes, and osseous formations in sea urchin. An application to electrically mediated drug and gene delivery is presented. Periodic level surfaces which approximate minimal surfaces are used to generate a geometric representation of tissue. A method to create such structures ...

Cavity Sprayer Flow Optimization for Medical Devices Industry

T. Selvam, V.P. Kotte, and M. Marimuthu

HCL Technologies Ltd, Chennai, Tamil Nadu, India

Globally in Otolaryngology industry, Sinusitis is one of the most common diseases related to the nose. Sinusitis is caused when the cilia fail to move the mucus. As a result sinus tissue gets infected that leads to blockage of the sinuses. All the sinusitis can not be cured through drugs and certain require surgery. When a sinus cavity subjected to a nasal endoscopic surgical procedure, one of ...

Microwave Exposure System for In Vitro and In Vivo Studies - new

C. Nadovich[1, 2], W. D. Jemison[2], J. A. Stoute[3], C. Spadafora[4]
[1]Lafayette College, Easton, PA, USA
[2]Clarkson University, Potsdam, NY, USA
[3]Pennsylvania State University, Hershey, PA, USA
[4]INDICASAT AIP, Ciudad del Saber, Panama

A computer controlled microwave exposure system and specialized applicators were constructed for the purpose of facilitating accurate observations of microwave radiation effects on uninfected and infected biological tissue in vitro and in vivo under different electromagnetic modalities and exposure configuration. To address diverse requirements, three different applicators were developed: a ...

Biofluid-Structural Interaction in Abdominal Aortic Aneurysm for Predicting Timeline to Rupture: The Effect of Hypertension and Aorta Wall Material Properties - new

K. Cluff[1], H. Mehraein[1], G. Jayakumar[2]
[1]Bioengineering, Wichita State University, Wichita, KS, USA
[2]Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

An abdominal aortic aneurysm (AAA) is a bulge formed in the large blood vessels that supply blood to the abdomen, pelvis, and legs. A fluid structure interaction model was developed in a 3D aortic aneurysm model, which was constructed from abdominal CT scan images. Combining medical imaging and computational fluid dynamics (CFD) in a time dependent study allowed the determination of wall ...

Multiphysics Modeling of a Minimally Invasive Tissue Ablation Methodology

J. S. Crompton [1], J. Thomas [1], K. Koppenhoefer [1],
[1] AltaSim Technologies, Columbus, OH, USA

Necrosis of human tissue can typically be obtained by exposure to temperatures below 40°C or above +50°C. However, inherent variability in tissue properties, the complexity of tissue response and dissipation of thermal energy by local perfusion or blood flow can make the development of routine, predictable in-vivo approaches to produce necrosis difficult. Although a number of thermal ablation ...

A Method for Efficient Calculation of Diffusion and Reactions of Lipophilic Compounds in Complex Cell Geometry

Kristian Dreij[1], Qasim Ali Chaudhry[2], Bengt Jernström[1], Ralf Morgenstern[1], and Michael Hanke[2]
[1]Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
[2]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden

A general description of effects of toxic compounds in mammalian cells is facing several problems. Firstly, most toxic compounds are hydrophobic and partition phenomena strongly influence their behaviour. Secondly, cells display considerable heterogeneity regarding the presence, activity and distribution of enzymes participating in the metabolism of foreign compounds i.e. bioactivation ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the macroscopic ...

A Multiphysics Model of O2 Transport and Recirculation During Venovenous Extracorporeal Life Support

S. Conrad [1],
[1] Louisiana State University Health Sciences Center, Shreveport, LA, USA

Venovenous extracorporeal life support (VV-ECLS) provides gas exchange support for severe lung failure by using an extracorporeal circuit consisting of a blood pump and an artificial membrane lung. Blood is withdrawn from a cannula placed into the inferior vena cava, and returned from the circuit into the superior vena cava, adding oxygen to and removing carbon dioxide from the venous blood. ...

Extending Engineering Simulations to Scientists: Food Safety and Quality Prediction Using COMSOL Multiphysics® and LiveLink™ for Excel®

A. Warning[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

The objective of this study was to develop an easy to use interface in Excel® that connects to not only the solvers in COMSOL Multiphysics®, but also existing databases of food properties, foodborne pathogenic microorganisms kinetics, and chemical kinetics, creating a comprehensive simulation software to predict food safety and quality. The user interface allows the user to select the food, ...

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent into the flue gas upstream of the particulate control device (PCD). As most PCDs are electrostatic ...