Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Near-Field FEM Simulations: A Vital Tool for Studying Silver-Based Plasmonic Systems

R. Asapu [1], S. W. Verbruggen [2], N. Claes [3], S. Bals [3], S. Denys [1], S. Lenaerts [1],
[1] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium
[2] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium; Center for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
[3] Department of Physics, EMAT Research Group, University of Antwerp, Antwerp, Belgium

Silver nanoparticles are valuable in the field of plasmonics since silver has a higher field enhancement factor compared to other metals that possess plasmonic properties. The plasmonic properties of silver nanoparticles can be finely tuned to the incident light wavelength through their size, shape and dielectric environment, and they have long-term stability. In this work, an ultrathin polymer ...

Flexible Numerical Platform for Electrical Impedance Tomography

A. Fouchard [1], S. Bonnet [1], L. Hervé [1], O. David [2],
[1] University Grenoble Alpes, CEA, LETI, MINATEC Campus, Grenoble, France
[2] Univesité Joseph Fourier, Grenoble Institute of Neuroscience, La Tronche, France

An implementation of the Electrical Impedance Tomography (EIT) forward problem in a generalist FEM package is presented. It fulfils the complete electrode model boundary conditions, combining current injection with contact impedance on a single boundary. Our implementation is benchmarked with the EIDORS FEM library. The Comsol Multiphysics environment proves consistent and provides a flexible ...

MEMS Based Sensor for Blood Group Investigation

M. Kaushik [1], S. Katti [1], V. Saradesai [1], P. Naragund [1], P. Vidhyashree [1], A. K. V. Nandi [1]
[1] B.V. Bhoomaraddi College of Engineering and Technology, Hubli, India

This article describes the design of MEMS based cantilever structure intended for determination of blood group and it is compared with manual method. Cantilever structure design has a sensing layer and when a blood sample comes in contact with this, results in coagulation. The surface tension in turn occurs due to chemical and biological reactions of antigen and antibodies resulting in ...

Simulating Spiking Neurons Using a Simple Mathematical Model

S. Kirigeeganage [1], J. Naber [1], D. Jackson [1], R. Keynton [1], T. Roussel [1],
[1] University of Louisville, Louisville, KY, USA

This paper utilizes COMSOL Multiphysics® software and the Application Builder to simulate neurological responses in nerve axons due to external electrical stimuli. The AC/DC Module of the COMSOL® software is first used to solve the Maxwell's equations. Then the results from the Maxwell's equations are used to drive a second model constructed using global equations using the Global ODE and DAE ...

1D Axisymmetric Modeling of Shrinkage for Non-Porous Materials

J. M. Meot [1], A. Briffaz [1], J. Jacquin [2], S. Rashidi [2]
[1] Cirad, UMR QualiSud, Montpellier, France
[2] Bureau national Interprofessionnel du Pruneau, Villeneuve, France

A 1D-axisymmetric model was built to represent the drying of a single d’Ente plum to d’Agen prune. Underlying assumptions of the model were those of Di Matteo et al. 2003. Sorption isotherms of plum come from Tsami et al, 1990 and equation structure of apparent water diffusion coefficients from Sabarez, 2001. External transfer coefficients were adjusted by direct measurements. The parameters of ...

Acoustic Field Comparison of High Intensity Focused Ultrasound Using Experimental Characterization and Finite Element Simulation

J. L. Teja[1], A. Vera[1], L. Leija[1]
[1]Department of Electrical Engineering, Cinvestav-IPN, Mexico D.F., Mexico

High Intensity Focused Ultrasound (HIFU) is used as a noninvasive technique of tissue heating and ablation for different medical treatments. This paper presents a quantitative comparison of HIFU acoustic fields experimentally obtained versus simulated acoustic fields. Acoustic field characterization was realized in two HIFU transducers using water as a propagation medium. Also, simulations were ...

Elucidating the Mechanism Governing Particle Alignment and Movement by DEP

G. Zhang [1], Y. Zhao [1], J. Brcka [2], J. Faguet [2],
[1] Clemson University, Clemson, SC, USA
[2] Tokyo Electron U.S. Holdings, Inc., Austin, TX, USA

We have simulated alignment and movement of multiple particles under Dielectrophoresis (DEP) using the Particle Tracing Module in COMSOL Multiphysics® software with particle-particle interaction taken into consideration. We are able to do efficient modeling for both 2D and 3D cases. With this work, we are able to shed important insights into the process of pearl chain formation, antenna-like ...

Using COMSOL Multiphysics for Modeling of Musculoskeletal Biomechanics

R. L. Spilker
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, New York, USA

In this presentation, we study the modeling of physiology and muscoskeletal biomechanics using COMSOL. The outline for the presentation is in particular: Why is COMSOL particularly powerful for modeling physiology? Modeling soft tissues like cartilage Optimization to determine soft tissue properties Modeling of moving loads in the TMJ Robust 3D models from imaging data Model of primary ...

Determination of Mechanic Resistance of Osseous Element Through Finite Element Modeling

E. Isaza[1], E. Salazar[1], L. Florez[1]
[1]Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia

The consequences of hip fracture and femoral fracture are widely known. The mechanical strength of the femur varies in every person, but it is possible to predict the mechanical resistance with parameters like density, dimensions and mineral content. This paper uses different models and empirical studies to determine the mechanical properties of the human femur, developing isotropic and ...

Surface Charge Modulated Ionic Conductance of Closed Solid State Nanopore Biosensors

H. Ghosh [1], C. Roychaudhuri [1],
[1] Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal, India

This paper explores surface charge modulated ionic conductance of closed solid-state nanopores for explaining significant nonlinear length dependent variation in ionic current in such nanopore biosensors with a view to design improved sensors without increasing fabrication cost for biomolecule detection. Although extensive work has been done in modeling open pore conductance, closed nanopores ...