Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

High Field Magnetic Diffusion into Nonlinear Ferrimagnetic Materials

J-W. Braxton Bragg[1], J. Dickens[1], A. Neuber[1], and K. Long[2]
[1]Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, TX
[2]Dept. of Mathematics, Texas Tech University, Lubbock, TX

Ferrimagnetic based, coaxial nonlinear transmission lines (NLTLs) provide a means to generate sub-nanosecond risetime pulses (from nano-second input pulses) or megawatt level high power microwave oscillations, depending on the geometry, material, and external bias fields. This investigation uses the commercially available, finite element solver COMSOL to provide insight into pulse behavior. ...

Finite Element Analysis of Superconductive Tape by Using T-Ω Formulation

H. Arab[1], S. Memiaghe[1], C. Akyel[1]
[1]Ecole Polytechnique of Montreal, Montreal, QC, Canada

This paper deals with a numerical modelling technique based on finite elements method for computing magnetic field and current density distributions in high temperature Superconducting (HTS) tapes. The model is developed using the T-ῼ formulation for which the degree of freedom (DOF) and the CPU time decreased considerably in AC losses analysis, and it is also observe that T-ῼ formulation ...

Investigation on an Encircling Pulsed Eddy Current Probe Performance Using COMSOL Multiphysics®

S. Majidnia[1], R. Nilavalan[1], J. Rudlin[2]
[1]Brunel University, London, United Kingdom
[2]TWI ltd, Cambridge, United Kingdom

Conventional eddy current techniques have been used to a great extent for detection of surface breaking defects in conductive materials. However, detection of sub-surface defects is limited due to the single frequency and skin effect phenomena. Pulsed Eddy Current (PEC) techniques overcome these limitations. This work involves modelling of an encircling coil around a steel pipe with and without ...

The Effect of Space Charge due to the Auto-Ionization of Neutral, Hydrogenic States in Point-Contact Germanium Detectors at MilliKelvin Temperatures - new

D. Faiez[1], N. Mirabolfathi[1], B. Sadoulet[1], K. M. Sundqvist[2]
[1]Department of Physics, University of California - Berkeley, Berkeley, CA, USA
[2]Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA

A class of semiconducting detectors, operated at temperature T~50mK, has direct application to the search for dark matter particle, when are able to simultaneously measure both the ionization and phonons created by particle interactions. We explore the effect of space charge accumulation in a germanium p-type point contact detector which arises due to the auto-ionization of hydrogenic ...

Modell zur numerischen Simulation der thermischen Stabilität von Metalloxid Ableitern

Zeller, P.1, Rabl, M.2
1 FH-Wels, Studiengangsleiter Automatisierungstechnik
2 FH-Wels, Studiengangsleiter Innovations- und Produktmanagement

Moderne Überspannungsableiter bestehen aus einer halbleitenden Zinkoxidkeramik, die auf-grund ihrer nichtlinearen elektrischen Charakteristik ein spannungsbegrenzendes Verhalten zeigt. Aufgrund des negativen Temperaturkoeffizienten des Sperrstromes, kann es zu einem „thermischen Davonlaufen“ nach einem zu hohen Energieeintrag bei einem Ableitvorgang kommen. Die Belastbarkeitsgrenze muss ...

Design of Three Phase Homopolar Synchrone Reluctance Machine with Double Statoric Winding and Double Massive Rotor

C. Belalahy, I. Rasoanarivo, S. Rael, and F. M. Sargos
GREEN Institut National Polytechnique de Lorraine, Vandoeuvre lès Nancy, France

This paper deals with the design of a three phase synchronous reluctance machine constituted by two stators and two massive rotors. A coil is placed in the stator, between the two salient poles of the rotor. These poles can have parallel or perpendicular axes. Such structures allow the rotor to work as an inertial load and provide high dynamic performances with regards to energy conversion, a ...

Finite Element Analysis of Multiconductor Interconnects in Multilayered Dielectric Media

S. Musa and M. Sadiku
College of Engineering, Prairie View A&M University, Prairie View, TX, USA

Due to the complexity of electromagnetic modeling, researchers and scientists always look for development of accurate and fast methods to extract the parameters of electronic interconnects and package structures. In this paper, we illustrate modeling of multiconductor interconnects in multilayered dielectric media using COMSOL Multiphysics and the finite element method. We specifically determine ...

Determination of Electric Potential Distribution and Cell Resistance of a Uranium Electrorefining Cell

S.P. Ruhela, S. Agarwal, B. Muralidharan, B.K. Sharma, B.P. Reddy, G. Ravisankar, K. Nagarajan, C.A. Babu, and P. Kalyanasundaram
Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India

Electrorefining is an electrolytic process for obtaining high purity metal. In this process the impure metal is made anode and the high purity metal is deposited on cathode. Electrorefining is a key step in pyrochemical reprocessing of spent fuel from metal fuel fast reactors. Development of an electrorefining cell, in which processing of 10 kg of simulated spent fuel will be demonstrated, is ...

Verification and Time Performance Analysis of COMSOL v3.5a for Solving the Electromagnetic Problem in a Superconductor Slab

J. Lloberas[1], J. López[1], E. Bartolomé[2], and X. Granados[3]
[1]Universitat Politècnica de Catalunya, Barcelona, Spain
[2]Escola Universitària Salesiana de Sarrià, Barcelona, Spain
[3]Institut de Ciència de Materials de Barcelona, Barcelona, Spain

Numerical analysis based on finite element method (FEM) represents a powerful approach to solve electromagnetic problems. For instance, FEM methods have been broadly used to calculate the critical state current distribution in high temperature superconductors of various geometries. In the near future, we intend to develop a tool in COMSOL v3.5a for the analysis of power applications, such as ...

Modeling Ferrofluid Flow in an Annular Gap Moving with Reciprocating Shaft

Y. He[1], R. Nilssen[1]
[1]Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway

Ferrofluids have been successfully used in the seals for rotary shafts, but few studies focus on the reciprocating motion seals. Since the completely different operational regimes, previous experiences on the rotary motions could not be directly applied on the cases for reciprocating shafts. In this study, we present a simplified model to describe the process that a shaft linearly moving in a ...

Quick Search