Deriving Correction Factors for a Primary Standard for Radiation Dosimetry

Ronald E. Tosh, H. Heather Chen-Mayer

National Institute of Standards and Technology Physical Measurement Laboratory Radiation and Biomolecular Physics Division

Presented at the 2011 COMSOL Conference Oct 13, 2011

The NIST Water Calorimeter

Vessel with thermistors

Vessel with an ion chamber

Application Note: chamber calibration

- NIST water calorimeter terminates calibration chain for QA protocols in clinics/hospitals.
- Calibration transferred to referencequality standards used in secondary calibration labs.

The "Bureau International des Poids et Mesures" (BIPM)

- BIPM = International laboratory created by the metre convention; has an lonizing Radiation Division
- Role: "The task of the BIPM is to ensure world-wide uniformity of measurements and their traceability to the International System of Units (SI)."
- www.bipm.org

BIPM Intercomparison Program:

- Enables NMIs (like NIST) to declare calibration and measurement capabilities (CMCs)
- Key comparisons and database (http://kcdb.bipm.org)

Water Calorimetry at NIST

Heat Transport Corrections

Questions regarding existing remedies:

- Would the system exhibit a stable, steady-state behavior? Interruptions to reestablish thermal equilibrium might not be necessary.
- If so, to what extent would convection contribute? *Possibility to operate at room temperature instead of 3.98 °C.*

Heat Transport

- Beam: distributed heat source with semiempirical depth and transverse dose gradients.
- Ext stirring: simulated by elevated thermal conductivity in unstirred water.
- Heat transport: conduction only; no convection.

Response to chopped ⁶⁰Co beam -time domain

Response to chopped ⁶⁰Co beam -frequency domain

k_{ht} vs. shutter time (sec)

- derived from simulation

 k_{ht} (70 sec) = 1.0009

Conduction-like behavior obtained at low duty cycle (70s on, 1940 s off)

Heat Transport cont'd

Variation of "apparent" dose rate with shutter freq/period demonstrates agreement with heat equation (i.e. conduction only) *except* at higher shutter periods.

 \rightarrow steady-state operation at room temperature appears feasible at shorter exposure periods.

Heat Defect

Table 1. Model IIIR: reactions and rate constants (4 °C)

Reactions*				Rate constar
1	e + e	\rightarrow	$H_2 + OH^- + OH^-$	3.48×10
2	e_ + H	\rightarrow	$H_2 + OH^-$	1.73×10
3	e _{au} + OH	\rightarrow	OH-	2.38×10
4	e_{aa} + H ₂ O ₂	\rightarrow	OH ⁻ + OH	8.84×10
5	$e_{aq} + O_2$	\rightarrow	Ož	1.16×10
6	$e_{aq} + O_2$	\rightarrow	$HO_2 + OH^-$	8.48×10
7	e_{aq}^- + HO ₂	\rightarrow	HO ₂	8.48×10
8	H+H	\rightarrow	H ₂	3.44×10
9	H + OH	\rightarrow	H ₂ O	1.21×10
10	$H + H_2O_2$	\rightarrow	$OH + H_2O$	3.18×10
11	$H + O_2$	\rightarrow	HO ₂	9.58×10
12	$H + HO_2$	\rightarrow	H ₂ O ₂	7.24×10
13	$H + O_2^-$	\rightarrow	HO ₂	7.24×10
14	OH + OH	\rightarrow	H ₂ O ₂	3.76×10
15	$OH + H_2$	\rightarrow	$H + H_2O$	2.40×10
16	$OH + H_2O_2$	\rightarrow	$H_2O + H_2O$	1.79×10
17	$OH + HO_2$	\rightarrow	$H_2O + O_2$	9.08×10
18	$OH + O_2^-$	\rightarrow	$OH^- + O_2$	7.89×10
19	$HO_2 + HO_2$	\rightarrow	$H_2O_2 + O_2$	3.72×10
20	$HO_2 + O_2^-$	\rightarrow	$H_2O_2 + O_2 + OH^-$	5.84×10
21	H ₂ O	\rightarrow	$H^* + OH^-$	2.22×10
22	$H^+ + OH^-$	\rightarrow	H ₂ O	7.23×10
23	H ₂ O ₂	\rightarrow	$H^* + HO_2^-$	1.34×10
24	$H^{+} + HO_{2}$	\rightarrow	H ₂ O ₂	3.13×10
25	$H_2O_2 + OH^-$	\rightarrow	$HO_2^- + H_2O$	7.56×10
26	$HO_2 + H_2O$	\rightarrow	$H_2O_2 + OH^-$	5.45×10
27	н	\rightarrow	e_{aq}^{-} + H ⁺	8.83 × 10
28	e _{aq} + H [*]	\rightarrow	Н	1.88 × 10
29	$e_{aq} + H_2O$	\rightarrow	H+OH	5.08×10
30	H+OH-	\rightarrow	e _{aq} + H ₂ O	7.77×10
31	OH UN OF	\rightarrow	H'+0	1.34 × 10
32	H'+0	\rightarrow	OH U O	3.13 × 10
33	OH + OH	\rightarrow	$O + H_2O$	7.56 × 10
24	0 + H ₂ 0	\rightarrow	OH + OH	5.45 × 10
30	HO ₂		02 + H	4.21 × 10
27	U2 + H	-	0.102	5.15 × 10
29	0-100	-	UQ + H20	1.04 × 10
20	$O_2 + H_2O$		HU2 + 0H	1.94 × 10 7.05 × 10
40	0-140		0-140	2.44 × 10
40	0 + H ₂ O ₂	-	01 + H0	5.44 × 10
42	01+102		HO:	6.02 × 10
42			0-+04-	2.10×10
43	$e_{aq} + 10_2$		OH-+ OH-	1.82 × 10
45	0-0		0	2.62×10
46	0:	_	0.+0	670 × 10
40	0" + H05	\rightarrow	05 + 0H	2.84×10
48	0 + 05		OH-+OH-+O-	4.26 × 10
49	$HO_{2} + H_{2}O_{2}$	\rightarrow	$OH + H_0 + O_2$	2.90×10
50	$05 + H_{2}O_{2}$	\rightarrow	$OH^- + OH + O$	9 30 × 10
	W2 + 112W2		S. 1011101	2000 15 10

N.V. Klassen and Carl K. Ross, J. Res. Natl. Inst. Stand. Techol. **107**, 171-178 (2002).

Causes:

its^b

 Chemical reactions involving products of incident radiation and various dissolved species within the water

Effect on signals:

- Transient can be huge (~100%).
- Steady state depends on dissolved species (0 to few %).

Remedy:

 H_2 – saturated, high-purity water in a sealed glass vessel.

Summary

We convert from temperature rise to absorbed dose as follows:

