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Abstract: The transport of intense ion
beams with reduced beam divergence over
reasonable drift distances requires a reliable
space charge compensation (SCC). Negative
ion beams (required in the Neutral Beam
Injectors envisioned for the ITER tokamak)
are here discussed. Secondary particles are
generated by beam-gas collisions within the
beam volume and their motion is followed
by explicit leapfrog time integration until
they reach boundaries; when many beam-
lets are simulated, a fraction of the parti-
cle exiting the lateral boundaries is injected
again. Poisson equation is solved and fields
are accurately retrieved by Comsol Multi-
physics at each time integration step; ac-
curate choice of simulation parameters and
speeding up techniques are used. Results
show the formation of a SCC channel where
the beam passes, after a short transition re-
gion at drift begin. The channel sides show
double charge layers. These results fully con-
firm results of a preliminary fluid model, and
cross validation of both codes is discussed.
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1 Introduction

The Space Charge Compensation (SCC) is
considered to be a key ingredient of the
transport of high current ion beams in drift
regions (regions with no acceleration field)
[1, 2, 3, 4]. The phenomenon consists in the
accumulation of a background charge that
completely balances the beam space charge,
allowing transport of nearly parallel beams
without external focusing or acceleration.
The transition between the acceleration and
the drift region is a critical one, since the
background charge may flow into the accel-
erator; this paper presents detailed simula-
tions, which confirm the results of a previous
previous fluid model[5] and allow to map the

transition region and the beam propagation
channel.

A large ion beam application is the
IFMIF project, where a 125 mA beam of
H+ is transported between the ion source
preacceleration (PA) and the 2m away
accelerator[2] by the SCC with help of two
solenoids. Another example is the Neutral
Beam Injector where a matrix of 1280 beam-
lets (each consisting in 40 mA of D−, or
in preliminary tests H−) is transported by
SCC for 1.5 m from the electrostatic ac-
celerator to a beam converter, the so-called
neutralizer[6, 7, 8, 9].

A scheme of the typical geometry is
shown in Fig. 1. In this principle studies,
we consider a 2D (two dimensional) zx ge-
ometry and we choose simulation domains as
simpler as possible (a rectangle or two rect-
angles). Future application may suggest the
use of tapered electrodes.

For negative ions, we can consider only
two major collision process, called back-
ground gas ionization and primary beam
stripping

H± +H2 → H± + e+H+
2 (1)

H− +H2 → H0 + e+H2 (2)

where we mark with an underline the fast
particles that approximately maintain the
incoming H− velocity vb. We may have
the sum of these two processes in one colli-
sion. The effective collision cross sections are
about σ1 = 2×10−20 m−2 and σ2 = 3×10−20

m−2 for 100 keV H− [10, 11]. Particles pro-
duced in the reaction are usually called sec-
ondaries, as opposite to the primary parti-
cles, here H±.

Since for eq. 2 the electron typically
maintains the incoming H− velocity and
rapidly exits from the simulation domain, eq.
2 has no net effect on the SCC. On the other
side, in eq. 1 the electron gets only an energy
up to 10 eV and H+

2 speed is not much



Figure 1: A scheme (not to scale) of the regions
near the drift tube, comparing the simulation

domains of fluid and PIC-MC models

greater than the gas one[4] (both with ran-
domly directed velocities). As a result, elec-
trons leave rapidly the simulation domain
while H+

2 stay longer. This accumulation of
positive charge clearly shields the negative
beam, and it may continues until total elec-
tric potential φ is positive enough (respect
to drift tube walls) to trap some electrons;
that is to say, the beam is overcompensated.

For positive ion beams, the positive self
potential pushes H+

2 away and traps some
electrons, which are the background charge
in this case; equilibrium may be reached
when the total potential φ is slightly posi-
tive and the beam space charge is slightly
under compensated.

From 1D model of radial transport,
where φ,z = is assumed, it is known that
SCC appears over a critical gas pressure that
should be anyway minimized for economy of
gas pumping and to reduce beam collisions.
The simulation of 2D or 3D devices neces-
sary for a realistic beam transport is much
more challenging. Our fluid model[5] shows
a transition length of a few cm, and a clear
double charge layer at the beam edge.

This fluid model was implemented in a
Comsol Multiphysics (CM) environment, us-
ing several General PDE application modes,
namely: u the electric potential (scaled), n2

the density of H+
2 ions, vx and vz their fluid

velocity; the capability of treating mixed
boundary conditions was used to represent
one or many beamlet systems. Here parti-
cles are generated by a Particle in Cell Monte
Carlo approach (PIC-MC) [12], and moved
by a leap-frog method, using Comsol Multi-
physics routines to compute the electric po-
tential φ on a dense mesh and the field at
each particle location.

Detailed results for SCC should also help
larger scope codes, like BYPO [13, 14],
where source extraction, acceleration and
drift region are modeled, in place of the sim-
plified SCC model currently used.

In section II, the basic equations and
boundary conditions are summarized; some
details on programming efficiency, of noise
variance reduction techniques and of pri-
mary beam profiles are also given. Section
III show remarkable results of some simula-
tions and compares them to fluid model re-
sults. Section IV discuss perspective of syn-
ergies between fluid and PIC-MC models.

2 Basic equations and
assumptions

Let n2(z, x, t) = nH+
2

be the density of H+
2

ions (depending also on time t) and ne the
density of electrons. The code uses a 2D pla-
nar geometry; in the example here reported
some parameters are set up to meet the SPI-
DER [9] accelerator features: the gas density
is ng = 2 × 1018 m−3 and the acceleration
voltage is Ub = 100 kV.

We assume that primary ions are paral-
lel to z axis, which is approximately ver-
ified for short enough simulation domains
and for well designed accelerators. In detail,
vz = vb = 4.4 × 106 m/s and the primary
beam density is nH− = n0nb(x), where n0 is
its maximum density and nb is an user as-
signed profile. In order to speed up prelimi-
nary simulations, a reduced n0 = 8.2× 1013

m−3 is used; let 2rb = 8 mm be the beam
width. The attenuation length of the H−

beam is 1/(σ2Ng) = 16 m; in the consider-
ered simulation domain 0 < z ≤ Lz = 0.25
m the beam attenuation is small (about 1.5
%), so we can assume a constant primary
beam, allowing for a SCC axial equilibrium
∂zn2 = 0 at the right side (the beam exit).

The Poisson equation is

− (ε0/e)4 φ = n2 − ne − n0nb ≡ n0na (3)

where na measures the local charge compen-
sation (a 100 % compensation gives na = 0).
We also define

Q2(t) =
∫
n2(z, x, t) dx dz/(2rbn0) (4)

Qe(t) =
∫
ne(z, x, t) dx dz/(2rbn0) (5)



which are global measures of the compensa-
tion progress.

The rate density of secondary production
is

Rs = dn2 /dt = ngn0nb(x)σ1 (6)

So that an effective density of secondary
ns = Rs dt is created at each time step, and
divided into an suitable number of macro-
particles whose positions are chosen ran-
domly inside the beam region with a velocity
depending on particles species.

We assume that secondary electron ve-
locity at production is distributed according
to a Maxwellian with temperature (in energy
units) Te

∼= 3 eV; similarly the ion tempera-
ture at start be Ti. Ion temperature origins
include the gas temperature Tg

∼= 0.18 eV.
Reasonably larger Ti are usually assumed to
improve code stability. An important scale is
the Debye length λD = (ε0Te/e

2n0)1/2; here
λD = 1.4 mm for the low beam density used.
To faithfully represent Poisson equation in
the discretization, we need hx = hz ≤ lD/2
where hx and hz are the mesh sizes; conser-
vatively we use a square grid with hx = 0.17
mm. Since rb � λD, from fluid model we
can expected na

∼= 0 at beam center, and na

comparable with one half within distances
λD from beam edge.

Let N2 the number (bound by user
choice, here to less than 2×105) of macropar-
ticles representing H+

2 and w2 the number
of ions which each macroparticle represents;
clearly q2 = w2e and m2 = w2mH2; motion
equations are

m2 d tv = q2E(x) , d tx = v (7)

for each ion macroparticle (with position x
and velocity v). A leap frog method is
used, and is easily vectorized in the scripting
language[15], calling Comsol Multiphysics
routines for E calculation[15]. For simplic-
ity the integration time step dt 1 is (up to
now) taken equal for electron and ions, ac-
cording to dt 1 ≤ λD/v

th
e with vth

e the ther-
mal electron velocity. Since there are spa-
tial scales smaller than λD, namely the mesh
size hx and physically the beam edge thick-
ness δb, dt 1 = 1.2 ns is fairly large for elec-
trons, which are anyway the minority. For
ions, dt 1 is safely small. Space charge and φ
are updated each time step; space charge is
smoothed (rectangular kernel) within a dis-
tance ws = 5hx = 0.85 mm.

An estimate of the total number of H+
2

is An0Ly where A = 2rbLz is the beam
area and Ly = 1 m is a conventional exten-
sion in the ignored coordinate y; so that we
set w2 = An0Ly/N2; in our example w2 =
1.1×106. The scale of the interaction energy
EM = q22/2πε0Ly between two macroparti-
cles gives a first idea of the real ion energy
resolution of our simulations δTi � EM/w2

which equals 0.0032 eV; observed noise is
much larger, notwithstanding some smooth-
ing.

2.1 Boundary conditions

At the lower (x = 0) and upper (x = Lx)
boundaries, we have (exactly or approxi-
mately) as shown before[5]:

n · ∇u = −iwu (8)

where iw is set according to the cases: 1) for
the case of an infinite array of beamlets, we
have symmetry at upper and lower bound-
aries, so iw = 0; 2) for one beamlet only
in drift tube , iw ∼= 1/w, where w is the
distance between the domain boundary and
the actual wall; typical values are Lx = 22
mm and a drift tube width 62 mm , giving
w = 20 mm, which demonstrates a 65 % re-
duction in the simulation domain area and a
considerable speed up; 3) for many beamlets
in the same drift tube, iw may depend on
boundary.

At the exit plane z = zh, (in the middle
of an open space like the drift tube) a sim-
ple Neumann condition is appropriate. The
input plane z = 0 cuts the PA electrode and
the beam input hole. Of course at the PA
we have a fixed potential φ = φPA, measured
respect to the drift tube; typically φPA = 0.
On the beam hole, it is difficult to propose
a simple boundary condition (for the several
effects discussed in the fluid model[5], where
a part of the PA hole was indeed included,
see here Fig. 1). Anyway with large ap-
proximation we may consider that most of
the primary beam charge will be compen-
sated, resulting in weak fields; so that Ez is
weakly bound to zero, but φ is free. Joining
these regions, in Comsol Multiphysics we set
a Dirichlet condition at z = 0, with G = 0
and

0 = R = (φPA−φ)Θ(|x− 1
2Lx|−rh, wh) (9)

where the smoothed Heaviside function Θ
is given by the inbuilt function ’flc2hs’, rh



is the beam hole radius (7 mm here) and
wh = 0.5 mm is a smoothing distance. As
a verification, note that inside beam hole, Θ
is zero, so that φ is not constrained to φPA.

The boundary condition for particle flow
at z = zh is free symmetric and specular
flow; that is, when a particle exit with ve-
locity (vz, vx) another one is injected with
initial velocity (−vz, vx); this is consistent
with the Neumann condition for φ, since it
maintains an uniform SCC at this boundary.

At the PA, particles are lost: physi-
cally our low energy electron enters in the
metal and ions are neutralized, making two
H atoms. In the beam hole, particle fate
depends on the selfconsistent solution for φ;
typically ion flows freely, reaching the accel-
erator region; that is, ions are lost; electron
are reflected. This cases are easily imple-
mented in the scripting language.

At the lower and upper boundary (of the
simulation domain), a fraction Fc of parti-
cle may be reflected. In the many beamlet
case Fc > 0 indicates recirculation of secon-
daries from one beamlet to another. In the
single beamlet case, Fc

∼= 0; its exact value
depends selfconsistently on the φ value. For
positive φ, H+

2 ions which arrive at x = Lx

will continue to drift tube walls, so that
Fc = 0 exactly. For electrons with small
speed Fc = 1 − exp(−φ(z, Lx)/Te) since it
is still possible that they attracted back to
the beam, possibly returning to a different z.
This latter case for Fc is to be rapidly im-
plemented (also in the fluid model); we take
Fc = 0 in the following.

2.2 Implementation

Code largely benefit from parallelization of
Comsol Multiphysics routines, even if some
careful programming is required for effi-
ciency. In detail, the assembly phase is crit-
ical, since the user function ’dens(x,y)’ rep-
resenting the smoothed (n2−ne)/ε0 is called
many times by ’assemble’; this number was
reduced by increasing ’blocksize’. It should
be realized that computations contained in
’dens’ are repeated over all the 2D region
nodes, even if ’dens(x,y)’ is called for a few
points; the obvious and effective solution is
to perform most computations before ’dens’
is called. Other optimization modes, like
reusing the same stiffness matrix on all Pois-
son solver calls, give additional, but compar-

atively smaller speed gains, at the price of
more obscure programming; user may switch
between these modes at any time.

The predefined beam profiles (in the
order, flat, trapezoidal, gaussian and
parabolic) are symmetric respect to the x =
1
2Lx, so using the shorthand x′ = |x− 1

2Lx|,
they are easily written as

nb1 = Θ(rb − x′)
nb2 = max(0,min[1, 1

2 + (rb − x′)/δb])
nb3 = exp[− 1

2 (x′/σb)2] (10)

nb4 = max(0, 1− (c4x′/rb)2)

where δb is the thickness of the region where
nb2 goes from 1 to 0.

To maintain the normalization∫
nb(x) dx = 2rb we set c4 = 2

3 and
σb = rb(2/π)1/2.

Figure 2: Upper panel: map of the normalized
ion density, from fluid model. Lower panel:

map of the normalized densities (n2 − ne)/n0,
from PIC-MC. To enhance graph visibility, we

plot the decimal log, with a minimum
displayed of 0.001

Figure 3: Profile of densities at the middle
section z = 1

2
zh; density of primary nH− has a

trapezoidal shape, ’ntotal’ is n2 − ne, smoothed



Figure 4: History of total compensation degree
(upper panel), and of radial-axial losses (in

macroparticles per time step)

Figure 5: History of accumulated fractions of
ions and electrons

3 Results

Result of PIC-MC simulation for the case
Ti = 1 eV and φPA = 0 are shown in Figs.
2-7. This simulation takes 36 h on a 7 core
workstation.

An important result found by the 2D
fluid model was that the distribution of H+

2

ions (upper panel of Fig. 2) was more dif-
fused than the beam profile: cloud of H+

2

ions extends also outside the beam. The
PIC-MC simulation result in the Fig. 2 con-
firm this fact, even if the logarithmic scale
tends to make halo fluctuation more visible.
In Fig. 2 note that φPA = +25 V for the
fluid model and φPA = 0 V for PIC-MC,
but this locally affects only the PA region.

The diffusion of H2+ is more clearly vis-
ible in Fig. 3, referring to central section
z = 1

2zh and final time t = 0.006 ms; the
difference between primary density nH− and
secondary density n2−ne is the reason of the
double charge layer.

Code results include also the time history
of some space integrated quantities; from the
upper panel of Fig. 4 and from Fig. 5
we note that total compensation Q2 − Qe

reaches equilibrium rapidly, while Q2 and
Qe seems to follow similar growth, at least
for the particular initial condition chosen
(Q2 = 1.03 and Qe = 0). Radial losses
means count of the macroparticles exiting
from the upper and lower boundaries; ax-
ial refers to macroparticles exiting from the
z = 0 boundary; a continuous time averag-
ing is applied to make trends more visible.
Axial and radial losses of H+

2 seems to be
roughly equal, notwithstanding that lengths
of the boundaries is so much different. In
the electron case axial losses are negligible,
since they are repelled by the field near PA
hole.

A potential map (at final time) is shown
in Fig. 6; the negative values near z = 0 are
due to loss of H+

2 ions near the PA, which
weakens the SCC, so that the negative pri-
mary beam charge locally overwhelms the
SCC. The double layers of the net space
charge en0na on both beam edges is evident
also in the lower panel of Fig. 6, and is simi-
lar to charge layers found by the fluid model,
as shown (for a different nb profile) in Fig. 5
of Ref. [5].

Figs. 6 and 7 also confirm the complicate
field pattern near the PA grid.

Simulations for φPA = +25 V and other
values, and/or more macroparticles, are well
in progress. Using different typical beam
profiles, the dependence of the cloud radius
from the ion temperature is also to be inves-
tigated.

4 Discussion: Monte
Carlo vs fluid model

The original reason to develop a PIC-MC
(Particle In Cell-Monte Carlo) code was
that, even if computationally much more in-
tensive than fluid models, PIC-MC simula-
tions are the standard choice[2, 12] because
they are simpler to define and they naturally
follow the time evolution of the system; in
particular they verify whether SCC station-
ary equilibrium is stable or not. We anyway
see that granularity noise (roughly propor-
tional to N

−1/2
2 ) has visible consequences

(especially evident in Fig. 7 ) and this fact



Figure 6: Upper panel is a surface plot of φ; lower panel shows the total charge density, typically near
zero but with double charge layers aside the beam

Figure 7: Contour plot of φ

seems to require stronger smoothing
schemes. Moreover, in Fig. 3 our main
smoothing scheme (applied to total space
charge) is shown: note that more smooth-
ing will substantially deform the body of the
space charge, while less smoothing will make
granularity fluctuation more evident.

It should be noted that results of fluid
model and PIC-MC are similar, with dif-
ferences mainly due to implementation de-
tails (beam shape trapezoidal or parabolic,
recessed or flat input plane); so that a fluid
equilibrium (or an analytical guess of its so-
lution) was used to start PIC-MC from a
nearly compensated state.

Apart from fine tuning of smoothing
techniques, future work should take in con-
sideration joining of fluid and PIC-MC
codes; for example, the nonlinear solver of
a fluid model may start from the noisy
(but probably stable) equilibrium found by
a PIC-MC simulation.
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