

Microwave Plasma Simulation Applied to a Double ICP Jet Reactor

COMSOL Conference Stuttgart 2011

Horia-Eugen Porteanu and Roland Gesche Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany

Outline

- 1. ICP sources, development, structure
- 2. RF Simulation: Q-factor, matching impedance
- 3. Plasma simulation for p=10 mbar realistic results
- 4. Plasma simulation for p=0.1 mbar, not realistic results
- 5. Conclusions

Microwave Sources for Inductively Coupled Plasma (I)

Microwave Sources for Inductively Coupled Plasma (II)

Double ICP

Microwave Sources for Inductively Coupled Plasma (II)

RF Simulation (II) Behavior of the resonator for homogeneous plasma conductivity

RF Simulation (III)

Ideal matching for sigma_{plasma}=1 (Ω m)⁻¹

Point Graph: abs(emw.S11) (1

 $σ_{\text{plasma}}=1$ (Ωm)⁻¹

Plasma Simulation (I): Plasma Parameters E and H Fields

Plasma Simulation (II)

Power Dependence of the plasma ignition p=10 mbar, n_{e ini}=10¹⁴ – 10¹⁵ m⁻³, gas flow=10⁻² m³/s

Plasma Simulation (II)

Experimental results on transients

Plasma Simulation (III)

Time dependence of the plasma ignition, P=500 W, p=10 mbar, n_{e ini}=10¹⁴ – 10¹⁵ m⁻³, gas flow=10⁻² m³/s

Time (s)

Plasma Simulation (V)

Low pressure behavior, with gas flow p=0.1 mbar, P=30 - 5000 W, n_{e ini}=10¹⁴ m⁻³, gas flow= 10⁻⁴ m³/s No physical results!

Even for P=5000 W and n_{e ini}=10¹⁸ m⁻³ the electron density decreases. The electron density is the smallest in the center of the resonator ^{06/11/2011} ¹⁴

Plasma Simulation (VI)

Low pressure, no gas flow (no gas flow module, only plasma module) p=0.1 mbar, P=50 W, n_{e ini}=10¹⁴ m⁻³, No physical results!

t=1 10⁻⁷ s, n_e=5 10¹³ m⁻³

Even a finer Mesh (here "extra fine") does not help neither for better convergence nor for correct physics

Conclusions

- 1. One can calculate a time evolution of the ignition process for a pressure of 10 mbar
- 2. According to simulations for Argon it should appear an ICP modus only over 100 W
- 3. For a pressure of 0.1 mbar it seems to be no interaction between
- microwaves and plasma. The results are physically not realistic.
- 4. A finer mesh does not improve neither the convergence nor the physics.