Introduction	Experimental Setup	Measurements	Theory	Conclusion

Effect of Light on Ultrathin Resonators

Valerio Pini¹ Jose Jaime Ruz Martinez¹ Eduardo Gil¹ Montserrat Calleja¹ Javier Tamayo¹

¹BioNanoMechanics Laboratory, IMM-CNM, Spain

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Introduction ●○○	Experimental Setup	Measurements	Theory 00000	Conclusion
Introduct	ion			

・ロット (雪) (日) (日)

ъ

MEMS and NEMS

Very Promising Devices with Very High Resolution

Application Fields

- Signal Processing
- Biological and Chemical Sensors
- Observation of Quantum Effects

Displacements Transduction

Performance Requirements:

- Ultrahigh Displacement Sensitivity
- Ø Minimize Detection Back-Action

Introduction o e o	Experimental Setup	Measurements	Theory 00000	Conclusion
Ontical F)etection			

Optical Techniques

- Interferometry
- Laser Beam Deflection

Advantages

- Not Require Electrical Connection
- Very High Resolution (10-100 fm/Hz^{1/2})
- **O I Different Environment (***Vacuum, Gas and Liquid***)**

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction ○○●	Experimental Setup	Measurements	Theory 00000	Conclusion
Liaht Tun	ina			

Laser Back-Action Study

- Limit the Fundamental Detection Sensitivity
- Take Advantage with Light Tuning

Laser Back-Action Influence

• Microcantilever (Volume $\approx 1000 \ \mu m^3$) \Rightarrow Negligible Effect (Small Effects in Vacuum)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

2 Nanocantilever (*Volume* \approx 1-10 μ m³) \Rightarrow Large Effects

Introduction	Experimental Setup ●○○○	Measurements	Theory 00000	Conclusion

Experimental Features

- Tunable Diode Laser
- Temperature Control
- Air Environment

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	Experimental Setup	Measurements	Theory	Conclusion
000	0000	0000	00000	00

Experimental Features	J
Tunable Diode Laser	
Temperature Control	
Air Environment	
_	

Ultrathin Bilayer Cantilever

- Substrate (SiN): 50nm
- Coating (Au): 20nm

Introduction	Experimental Setup	Measurements	Theory 00000	Conclusion

E	Experimental Features
Т	unable Diode Laser
Т	emperature Control
A	ir Environment

Ultrathin Bilaver Cantilever

Substrate (SiN): 50nm

Coating (Au): 20nm

Introduction	Experimental Setup	Measurements	Theory 00000	Conclusion

Ultrathin Bilaver Cantilever

Substrate (SiN): 50nm

Coating (Au): 20nm

Introduction	Experimental Setup	Measurements ●○○○	Theory 00000	Conclusion

Measurements

V.Pini, J.Tamayo, E.Gil Santos, D.Ramos, P. Kosaka, H.D. Tong ,C. van Rijn, M.Calleja ACS Nano, **2011**, 5 (6) 4269–4275 (DOI : 10.102/nn200623)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Experimental Setup	Measurements	Theory 00000	Conclusion

Measurements

Introduction	Experimental Setup	Measurements ○○●○	Theory 00000	Conclusion

Measurements

$\text{FEM Simulations} \rightarrow \text{Comsol} \ (\text{HTM})$

- ≈ 1*mW* Optical Power → Heating 10*K*
- Power and Temperature Measurements are Qualitative Consistent

Laser Induced Heating

Introduction	Experimental Setup	Measurements ○○○●	Theory 00000	Conclusion

Experimental Summary

Main Features

- Non-Linear Behaviour of All Modes
- Dependence with Index Mode
- Torsional are More Sensitive than Flexural

ъ

Introduction	Experimental Setup	Measurements	Theory ●○○○○	Conclusion
Theory				

Doubly Clamped Resonators

Different Tuning Methods \Rightarrow Control of the Stress by Mechanical, Electrical and Thermal Effects

Singly Clamped Resonators: What is the Mechanism?

- Temperature dependence of Young Modulus ⇒ Linear Effect, Negligible in Air
- ② Unreleased Axial Stress ⇒ Increase in Thin Structures, Linear Effect

Introduction	Experimental Setup	Measurements	Theory ○●○○○	Conclusion 00

Theory and Simulations

3D Elastic Model with Geometric Nonlinearities

Non-linear von Karman Strain-Displacement Relations $\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j} \right)$

- Axial Stress $\implies N_{th} \cong \left(\frac{E_s \alpha_s h_s}{1 \nu_s} + \frac{E_f \alpha_f h_f}{1 \nu_f}\right) \Delta T$
- Moment $\implies M_{th} \cong \frac{E_t h_t h_s}{2(1-\nu_t^2)} \left[\alpha_f (1+\nu_f) \alpha_s (1+\nu_s) \right] \Delta T$

FEM Simulations \rightarrow Two Different Ultrathin Structures

- Trilayer Cantilever \rightarrow only N_{th}
- Bilayer Cantilever $\rightarrow M_{th}$ and N_{th}

Introduction	Experimental Setup	Measurements	Theory 00000	Conclusion
FEM Sin	nulations			

Frequency Shift Calculation: Two Sequential Steps

- Static cantilever displacement subject to a uniform temperature change
- Cantilever eigenfrequencies by including the static cantilever deformation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Experimental Setup	Measurements	Theory ○○○●○	Conclusion

FEM Simulations

Trilayer Cantilever

Trilayer Characteristics

- Only Axial Stress
- Linear Effect with Temperature
- Effect Quantitative Smaller Compared to our Case

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	Experimental Setup	Measurements	Theory ○○○○●	Conclusion

FEM Simulations

Bilayer Cantilever

Bilayer Characteristics

- *T* = 0 ⇒ Cantilever Without Thermal Strain
- Our Cantilevers are in a Prestressed State (1µm downwards)
- Non-Linear Behaviour, Torsional are More Sensistive

Trilayer Characteristics

- Only Axial Stress
- Linear Effect with Temperature

・ロット (雪) (日) (日) (日)

Effect Quantitative Smaller

Introduction	Experimental Setup	Measurements	Theory 00000	Conclusion ●○
Conclusio	n			

Tuning with Laser Back-Action

- Challenge to Achieve Fundamental Detection Limits
- Take Advantage to Tune with Light

Frequency Shift on Ultrathin Cantilevers (50nm)

- Non-Linear Beahaviour
- Vibration Mode Dependent

Frequency Resonance Change

- Unreleased Axial Stress ⇒ Residual Stress Near the Clamping
- ❷ Bending Moment ⇒ Large Deflection

Introduction	Experimental Setup	Measurements	Theory 00000	Conclusion ○●

Thank You for Attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで