Modeling Arterial Wall Transport For Drug-Eluting Stents

Franz Bozsak

Abdul I. Barakat Jean-Marc Chomaz

Laboratoire d'Hydrodynamique (LadHyX) Ecole Polytechnique, France "Mechanics and Living Systems Initiative" LadHyX-LMS

COMSOL Conference Stuttgart 2011 October 26, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= のへの

Introduction •oo Materials and Methods

Results and Discussion

Conclusion

Epilogue

Why Drug-Eluting Stents?

- Initial problem: re-occlusion of Bare-metal stents quickly after implantation
- Today's common solution: Drug-eluting stents (DES) for treating coronary atherosclerosis

Bozsak (LadHyX)

Modeling Arterial Wall Transport

Results and Discussion

Conclusions

Epilogue

Atherosclerosis and Drug-Eluting Stents

Endothelial Stent Coverage @ 28 days, Nakazawa et al. (2011)

- Many different DES designs have been proposed.
- Clinical trials and animal studies of different stents show *diverse responses* of the target vessel.
- The underlying *causes are not* well understood.

Bozsak (LadHyX)

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 3 / 17

The Sec. 74

Modeling the Arterial Wall and Drug Transport

Bozsak (LadHyX)

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 4 / 17

Introduction	
000	

Results and Discussion

Conclusions

Epilogue

Modeling the Arterial Wall and Drug Transport

--x reaction with cells

Model of the Arterial Wall

Multi-Layer

- SES and media described as porous layers
- ET and IEL expressed as Kedem-Katchalsky membranes (Prosi *et al.* (2005))
- Commonly used for macromolecular transport simulations

Results and Discussion

Conclusions

Epilogue

Baseline Model of the Stented Artery

Layers:	multi-layer model	+
Reaction:	reversible binding model	+
Drug:	paclitaxel	

Results and Discussion

Conclusions

Epilogue

Baseline Model of the Stented Artery

Implemented in COMSOL Multiphysics 4.2

Bozsak (LadHyX)

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 5 / 17

Results and Discussion

Conclusions

Epilogue

Baseline Model of the Stented Artery: Intima

Bozsak (LadHyX)

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 6 / 17

Materials and Methods

Results and Discussion

Conclusions

Epilogue

Solute Dynamics Model: Reaction Model

Reaction Model of Specific Binding and Differential Equation Representation

$$L + S \rightleftharpoons_{k_r} B \Rightarrow \frac{db}{dt} = \text{Da}_2(\underbrace{c(1-b)}_{\text{forward}} - \underbrace{\frac{b_M}{c_0 B_p}}_{\text{reverse}} b)$$

b: Concentration of Bound Drug c: 0

c : Concentration of Free Drug

(Tzafriri *et al.* (2009)) Bozsak (LadHyX)

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 7 / 17

Results and Discussion

Conclusions

Epilogue

Solute Dynamics Model: Reaction Model

Reaction Model of Specific Binding and Differential Equation Representation

$$L + S \rightleftharpoons_{k_r} B \Rightarrow \frac{db}{dt} = \underbrace{\mathsf{Da}_2}_{\text{forward}} \underbrace{(c(1-b) - \frac{b_M}{c_0 B_p} b)}_{\text{reverse}}$$

$$b : \text{Concentration of Bound Drug} \quad c : \text{Concentration of Free Drug}$$

$$\mathsf{Da}_2 : 2^{\text{nd}} \text{ Damköhler number} = \frac{\text{reaction}}{\text{diffusion}} \quad B_p : \text{Binding Potential:} \quad \begin{array}{c} \text{hydrophilic drugs: small } B_p \\ \text{hydrophobic drugs: large } B_p \end{array}$$

Bozsak (LadHyX)

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 7 / 17

(日本) (日本) (日本) (日本)

Introduction	
000	

Results and Discussion

Conclusion

Epilogue

Solute Dynamics Model: Reaction Model

Reaction Model of Specific Binding and Differential Equation Representation

$$L + S \rightleftharpoons_{k_r} B \Rightarrow \frac{db}{dt} = \underbrace{\mathsf{Da}_2}_{\text{forward}} \underbrace{(c(1-b))}_{c_0} - \underbrace{\frac{b_M}{c_0}}_{\text{reverse}} b)$$

b : Concentration of Bound Drug *c* : Concentration of Free Drug

Da₂: 2nd Damköhler number = $\frac{\text{reaction}}{\text{diffusion}}$

Bp: Binding Potential:

hydrophilic drugs: small B_p hydrophobic drugs: large B_p

Drug Properties: Paclitaxel vs. Sirolimus							
	Drug	Pe	$Da_1 = \frac{reaction}{convection}$	Da ₂	$B_{\mathcal{P}} = rac{b_m}{arepsilon K_d}$	$K_d = \frac{k_r}{k_f} \left[\frac{\text{mol}}{\text{m}^3} \right]$	$b_M \left[\frac{\text{mol}}{\text{m}^3}\right]$
	Paclitaxel Sirolimus	13.0 3.7	0.5 33.8	6.8 125.0	41 139	$\begin{array}{c} 3.1 \cdot 10^{-3} \\ 2.6 \cdot 10^{-3} \end{array}$	0.127 0.366

Bozsak (LadHyX)

Modeling Arterial Wall Transport

Materials and Methods

Results and Discussion

Conclusion

Epilogue

Study Objectives

- Assess the advantages of a multi-layer model
- Investigate the transport dynamics of the two commonly applied hydrophobic drugs paclitaxel and sirolimus.

Results and Discussion

Conclusions

Epilogue

Arterial Wall Dynamics: Drug Transport

Total Drug Concentration

고나님

< 17 >

Results and Discussion

Conclusion

Epilogue

Effect of Flow Reynolds Number

< 🗇 > < 🖻 > < 🖻

Materials and Methods

Results and Discussion

Conclusio

Epilogue

Effect of the Choice of Drug

Endothelial Stent Coverage @ 28 days, Nakazawa *et al.* (2011)

Bozsak (LadHyX)

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 11 / 17

Results and Discussion

Conclusions

Epilogue

Arterial Wall Dynamics: Fast- vs. Slow-Release

Fast-release

-

< 🗇 🕨

Introduction	Materials and Methods	Results and Discussion	Conclusions	Epilo

Arterial Wall Dynamics: Fast- vs. Slow-Release

Fast-release

Slow-release

Introduction	Materials and Methods	Results and Discussion	Conclusions	Epilogue
000	000	000000		

Slow-release

Arterial Wall Dynamics: Fast- vs. Slow-Release

Fast-release

$8\cdot 10^{-3}$ $2.5 \cdot 10^{-3}$ paclitaxel paclitaxel Norm. mean wall oncentration (\overline{c}/c_0) sirolimus Norm. mean wall oncentration $(ar{c}/lpha_{lpha})$ $2\cdot 10^{-3}$ sirolimus $6 \cdot 10^{-3}$ concentration concentration $1.5\cdot10^{-3}$ $4\cdot 10^{-3}$ $1 \cdot 10^{-3}$ $2\cdot 10^{-3}$ $0.5 \cdot 10^{-3}$ 0 0.010.1 100 1 50 150 10 20 30 40 50 60 0 Time (d) Time (h) $K_d = \frac{k_f}{k_f} \left| \frac{\text{mol}}{\text{m}^3} \right|$ 2nd Da 1st Da $B_p = \frac{b_m}{\varepsilon K_d}$ mol m³ Drug Pe Ь_М $3.1 \cdot 10^{-3}$ Paclitaxel 13.0 0.5 6.8 41 0.127 $2.6 \cdot 10^{-3}$ Sirolimus 3.7 33.8 125.0 139 0.366

Bozsak (LadHyX)

COMSOL 2011 10/26/11 12 / 17

-

< 🗇 🕨

Materials and Methods

Results and Discussion

Sirolimus

Conclusions

Epilogue

Arterial Wall Dynamics: Drug Binding

Paclitaxel

Occupied Binding Site Fraction

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 13 / 17

A B F A B F

< 🗇 🕨

Arterial Wall Dynamics: Transport Modes

Paclitaxel

- Mode I: Transport-dominated
- Mode II: Competition of transport and reaction (binding)
- Mode III: Reaction-dominated (unbinding)

Sirolimus

- Mode I: Reaction-dominated (binding)
- Mode II: Competition of transport and reaction (binding)
- Mode III: Reaction-dominated (unbinding)

Drug	Pe	Da ₁	Da ₂
Paclitaxel	13.0	0.5	6.8
Sirolimus	3.7	33.8	125.0

Conclusions

- MULTI-LAYER MODEL INCREASES SPATIAL RESOLUTION
 - Different properties of intima and media have to be taken into account.
- TRANSPORT DYNAMICS DIVIDED IN THREE DISTINCT MODES
 - Modes I+II: set distribution pattern and toxicity/efficacy levels.
 - Mode III: determine the efficiency of the stent design.
- OPTIMIZATION POTENTIAL
 - Adjusting drug properties and release kinetics as part of the stent design with the goal of improving drug retention and distribution within the arterial wall.

Materials and Methods

Results and Discussion

Conclusion

Epilogue

Acknowledgments

PhD Fellowship: Ecole Polytechnique

Sponsor: AXA Research Fund

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 16 / 17

A (10) A (10)

Materials and Methods

Results and Discussion

Conclusion

Epilogue

Thank you for your Attention!

Bozsak (LadHyX)

Modeling Arterial Wall Transport

COMSOL 2011 10/26/11 17 / 17

고나님

Numerical Model: Mesh

boundary layer elements

$\bullet \approx 300,000$ elements