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Abstract: The research aims to clarify some 
aspects of the gas hydrodynamics within the 
twisted conduct present in the heat 
accumulation stoves (ceramic-refractory 
stoves). The high temperature combustion 
products flow in the twisted conduct releasing 
heat to the refractory. The stored heat is 
returned to the environment as radiant heat. 
During this process may occur transition from 
laminar to turbulent motion in the conduct. 
Both Comsol laminar and k-ε turbulent models 
have been used in case of straight and curved 
pipes with circular, square and rectangular 
cross sections, at different Reynolds numbers, 
in case of smooth wall. Comsol Navier-Stokes 
model properly simulates fluxes at low 
Reynolds numbers. k-ε and k-ε at low 
Reynolds numbers models properly simulate 
the motion at high Reynolds numbers. In the 
transition zone, 3000< Re <7000, the solution 
of the k-ε at low Reynolds numbers appears 
distant from the literature results and strongly 
dependent on the computing grid. 
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1. Introduction 
 
The research regards a particular kind of 

heat accumulation stoves made of ceramic and 
refractory. They are a traditional heating 
element of the European Alpine regions, 
whose history began in the fifteenth century. 
They consist of a combustion chamber, where 
woody material is burned, followed by a 
twisted conduct where the high temperature 
products of combustion flow, giving off heat to 
the refractory. Due to the heat transfer along 
the pipe the kinematic viscosity decreases, by 
increasing the Reynolds number and causing 
transition from laminar to turbulent motion. 
Moreover the continuous changes of direction 
imposed by the curves, cause local 
contractions and expansions of the flux and, 
consequently, energy losses which are difficult 
to evaluate. 

The stored heat is returned slowly to the 
environment in the form of radiant heat from 
the ceramic tiles of the external surface.  
 

The way the heat exchange happens 
depends mainly on gas flow conditions 
(laminar or turbulent) and on conduct physical 
properties (roughness of the internal surface of 
the conduct), as well as the mass of refractory 
material and its geometric arrangement. 

The attempt to describe these phenomena 
is the goal of the present research, in order to 
provide increased awareness in the design 
process of these technological elements, which 
are strongly affected by the uncertainties above 
described. We expect to obtain important 
consequences also in terms of energy saving 
and pollution control (optimizing the 
combustion process and control over the 
production of fine particles). 

 
 

       
Figure 1: Left: historical “Sfruz” heat accumulation 
stove, located in the Buonconsiglio Castle in Trento, 
Italy. Right: view of a project design of modern 
stoves, where can see combustion chamber and 
twisted conduct. 

 
 

2. Physical considerations 
 
The accumulation stoves represent a 

technological system for space heating through 
radiant heat. The heat is generated in a 
combustion chamber that burns a determined 
amount of woody material at high 
temperatures and in a short period of time. 
The heat is accumulated in the refractory 
material with high density and high 
heat capacity, arranged around the combustion 
chamber and around the conduct of 
the combustion gases, and is returned 
to the environment as radiant heat from the 
outer surface of the stove at lower 
temperatures and for a much larger duration 
than the generation time (Figure 2). 



In the traditional accumulation stove the 
motion of the gases produced by the 
combustion is caused by the pressure 
difference between the local atmospheric 
pressure and the air pressure in the entrance 
zone of the air necessary to the combustion. 
That pressure difference is caused by the 
density variation between the cold atmospheric 
air and the hot air in the chimney (Figure 3), as 
well as the height of the chimney. It can be 
estimated as follows: 

 
( ) HgPP faBA Δ⋅⋅−=− ρρ  Eq. 01 

 

 
Figure 2: Scheme of the thermal attenuation 
generated by an accumulation stove. High power for 
a low duration of the thermal power produced in the 
combustion chamber, in red. In blue the low  power 
for a long duration of the thermal power released by 
the external surface of the stove. 

 
 

 
 

Figure 3: The driving force of the combustion gases 
is due to the difference between the density of the 
air in the atmosphere and the density of the gases 
inside the chimney. 

 
So, the driving power is a function of the 

elevation, of the air temperature, of the 
atmospheric pressure, of the gases temperature 
and of the height of the Chimney. In Figure 4 
an idea of the values in Pa of the driving 
force is given. It has been evaluated 
considering the standard atmosphere, an air 
temperature of 5 °C and a height of the 
chimney of 5 m. 

At constant air temperature and chimney 
height the driving force increases strongly with 
the temperature of combustion gases and 
decreases with the elevation where the stove is 
located. To identify the basic hydrodynamic 

characteristics of the gases motion, some 
numerical evaluations were carried out in 
permanent motion conditions. 

 
It has been hypothesized that the stove is 

located at an altitude of 500 m asl, that the 
outside air temperature is equal to 5°C, that the 
chimney height is equal to 5 m and that the 
total length of the conduct (chimney height 
plus the length of the twisted conduct) is 10 m. 

The diameter of the pipe has been set equal 
to 0.18 m, 0.25 m and 0.35 m. The relative 
roughness of the pipe, e/D was set equal to 
0.002. The temperature of the combustion 
gases was kept constant at 10°C, 100°C and 
500°C. These may represent the average 
temperature of the gases at different moments 
of functioning of the stove. 

It is also assumed the presence of 5 90° 
bends and 4 180° bends. The ratio, Rc/D, 
between the curvature radius and the diameter 
of the pipe was set equal to 0.5 and 1. The 
energy dissipation due to the bends were 
evaluated according Idel'cik, 1960. 

 
 

 
Figure 4: Driving pressure of gases in the 
twisted conduct inside the stove and in the chimney. 

 
 
Figure 5 shows how gases velocity 

increases with increasing temperature and with 
increasing radius of curvature of the bends and 
remains essentially unchanged with increasing 
area of the pipe. 

 
 

 
Figure 5: The mean velocity of gases as a function 
of the pipe area, gases temperature and geometry 
of curves. 



Figure 6 shows how the mass discharge 
of combustion gases increases with increasing 
area of the pipe, gases temperature and radius 
of curvature of the pipe. 

 
 

 
Figure 6: Mass discharge in the pipe as a function 
of the area of the pipe, gases temperature and 
geometry of curves. 

 
 
Figure 7 shows the behaviour of the 

Reynolds number with temperature of the 
combustion gases. The evaluations were 
carried out taking into account the variation 
of the density and viscosity of gases at 
different temperatures: 
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Figure 7: Reynolds number in the pipe as a function 
of gas temperature, of the area of the pipe and of the 
geometry of curves. 

 
 
The Reynolds number takes values 

for which the motion is in transition 
conditions between laminar and turbulent flow.  
Under these conditions the estimate of 
dissipation, due mainly to the curves, is 
particularly delicate. 

The simple considerations described 
above show that it is necessary to increase 
the quality of the analysis of the problem in 
order to obtain design capabilities closer to the 
physical phenomenon. 

 
 
 

3. Numerical Model 
 
In the first phase of the research Comsol 

Multiphysics has been used to simulate the 
hydrodynamics of combusted gases. Straight 
and curved conducts of different sections have 
been considered (round, square and 
rectangular). Both laminar, turbulent at low 
Reynolds numbers and turbulent flow model 
have been tested. 

 
3.1 Straight pipe 

 
The ‘uniform’ motion inside a straight pipe 

can be modeled using a 2D axial symmetry. In 
the simulations we have varied the Reynolds 
number from 1000 to 100.000. 

For Reynolds between 1000 and 3000  
Navier-Stokes model has been used, whereas 
for Reynolds larger than 3000 the k-ε turbulent 
model and the k-ε model at low Reynolds 
numbers have been used. 

For all models the boundary conditions in 
the fluid domain were: 
• velocity at the inlets. Only for turbulent 

models, the turbulent length scale 
( DLT ⋅= 7.0 ) has been set,  in order to 
take into account boundary layer effects; 

• pressure at the outlets; 
• the contact condition at the wall, was 

imposed for laminar motion ( 0=U ), 
while for turbulent flows a logarithmic 
wall function was used. This condition 
provides for the velocity a no penetration 
condition into the viscous sublayer 
( 0ˆ =⋅ nU ); a homogeneous Neumann 
condition for the turbulent kinetic energy, 

0ˆ =∇⋅ kn , and the condition Wku δε τ
3=  

for the dissipation rate of turbulence 
energy.  In  the  turbulent  flows,  the  steep 
gradients  close  to  the  walls  do  not 
permit to solve the flow variables. For this 
reason in k-ε turbulent model has been 
assumed that the computational domain 
begin at a distance Wδ  from the wall. The 
distance Wδ  is computed so that +

Wδ  
becomes 11,06. At the end of each 
simulation was checked that +

Wδ  was 11,06 
on most of the walls.  When  the  k-ε  at  
low  Reynolds numbers  model  has  been  
used,  the  wall boundary  condition  was  a  
"no  slip"  condition,  which  means  that  
the  velocity  and  the  turbulent  kinetic  
energy are zero ( 0=U , 0=k ). This 
because  that  model  evaluated the 



physical variables also in the viscous 
sublayer till the wall. In this case, for 
dissipation rate of turbulence energy, the 
boundary  condition reads ρμε 22 Wlk= . 
At the end of each simulation was checked 
that the dimensionless distance to cell 
center *

Cl  was near unity on most of the 
walls. 
 

3.1.1 Mesh and Solver 
 
It must be said that the choice of the kind 

of mesh depends on the shape of the 
computational domain (for instance with or 
without sharp curves), as well as on flow 
conditions (laminar or turbulent). 

For solving our problems we have used all 
kind of available meshes. 

For straight pipes (2D axial simmetry), the  
laminar flow has been solved using a 
structured mesh, called "mapped mesh" in 
COMSOL. The turbulent flows have been 
solved, both with the k-ε turbulent model and 
the k-ε at low Reynolds number, using an 
unstructured mesh, called " free triangular" in 
COMSOL (Table 1). 

 
Model Space 

Dim. 
DOF 
(106) 

Type Mesh 
used for 

N. – S. 0,250 mapped  
k-ε 0,590 free triangular 
k-ε LR 

2D
 

A
xi

al
 

1,300 free triangular 
 

Table 1: Space dimension, Degree of Freedom 
of matrices system and type of mesh used for 
the diferent models in case of straight pipe. 

 
3.2 Curved pipe 

 
The changes of direction in the pipes have 

been made with the introduction of elbows and 
sharp curves. The contraction of the flow, 
starting from the inner edge of the curve, and 
the successive expansion generate a loss of 
energy. The energy drop, due to the curve, can 
be expressed with the equation: 

 

g
VE
2

2

ξ=Δ  Eq. 02 

where ξ  has to be estimated. Besides, at the 
curves, secondary current develop in the cross 
section. 

A literature case has been simulated (H. 
Meckel, 1976, in Ghetti 1987):  a 25° curved 
pipe with radius of curvature equal to 26 m 
and pipe diameter of 2 m (Figure 8). The fluid 

was water with mean velocity equal to 3.63 
m/s. 

Other simulations have been made  of a 
double sharp curve in a pipe with a diameter of  
160 mm, where the fluid was air (Figure 9). 
Results of numerical simulations have been 
compared with laboratory experiments with 
Reynolds number ranging from 2500 up to 
35000. 

 

 
Figure 8: Curved pipe (25°, radius of curvature 26 
m): pipe diameter equal to 2 m, mean velocity equal 
to 3.63 m/s. 
 

 
Figure 9: A double sharp curve:  pipe diameter 
equal to 160 mm; Reynolds number from 2500 up 
to 35000. 

 
Due to the secondary currents it has not 

been possible to simplify the model with one 
geometric symmetry. The 3D geometric space 
dimension has been used.  

For Reynolds numbers until values of 3000 
Navier-Stokes model was used. For Reynolds 
larger than 3000 the k-ε turbulent model has 
been used. 

The boundary conditions were the same as 
in the case of a straight pipe (see 3.1 Straight 
pipe). 

 
3.2.1 Mesh and Solver 

 
For curved pipes (space dimension 3D), 

unstructured meshes  have been used,  called 
"free tetrahedral" in COMSOL. In addition,  
a boundary layer mesh has been used.  
The thickness of the first layer was estimate 
respecting the rule: 

 

WFLh δ⋅≤ 2  Eq. 03 
 
In the first case, 25° curved pipe, the 

motion regime is turbulent, fully developed, 
and so the k-ε model has been used.  

For the simulations of the double sharp 
curve with increasing Reynolds numbers, from 
2500 up to 35000, Navier-Stokes model when 
Reynolds was less than 3000, and k-ε turbulent 
model with Reynolds higher than 3000 have 
been used (Table 2). 



25° CURVED PIPE 

Model Space 
Dim. 

DOF 
(106) 

Type Mesh 
used for 

k-ε 3D 0,710 free tetrahedral + 
boundary layer 

DOUBLE SHARP CURVE 

Model Space 
Dim. 

DOF 
(106) 

Type Mesh 
used for 

NS 3D 0,350 free tetrahedral 

k-ε 3D 1,200 free tetrahedral + 
boundary layer 

 

Table 2: Space dimension, Degree of Freedom of 
matrices system and type of mesh used for the 
diferent models in case of curved pipe. 

 
 

4. Experimental Results 
 

4.1 Straight pipe 
 
In the case of laminar flow, numerical 

cross-sectional velocity distribution has been 
compared with velocity laminar law (Eq. 4) 
whereas, for turbulent flow, the comparison 
has been made with velocity defect law (Eq. 
5). From the simulations the resistance number 
has been calculated and compare with the 
expression f=64/Re, in case of laminar flow, 
and with Colebrook-White expression, in case 
of turbulent flow. 
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In Figure 10 numerical cross-sectional 

velocity distribution has been compared with 
laminar and defect law. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

In Figure 11 numerical values of 
the resistance number are showed, together 
with the Moody diagram, obtained from 
the application of Navier-Stokes model,  
k-ε at low Reynolds numbers turbulent model 
and k- ε turbulent model, in case of straight 
pipes. The agreement in laminar conditions 
with Navier-Stokes model is quite good.  
The same can be said when using k- ε 
turbulent model with Reynolds number 
larger than 10.000, if the walls of the pipe 
can be considered smooth. The application 
of the k- ε at low Reynolds numbers turbulent 
model has proved to be rather delicate 
and significanty dependent on the generation 
of a “good” mesh. In the figure are reported 
the best results obtained. 

 

 
Figure 11: Numerical Resistance number, obtained 
with Comsol, showed together with the 
Moody diagram: behaviour of different models 
(Navier-Stokes, k-ε and k-ε at low Reynolds 
number). 
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Figure 10: Comparison between numerical results and literature data of velocity distribution in a straight, circular 
cross section pipe. On the left:Re = 1.700; on the right: Re = 500.000. 



4.2 Curved pipe 
 
Case 1: 25° curved pipe.  
In Figure 12 is reported the velocity 

distribution at a section of a circular pipe 
located at a distance of 11.7 diameters after a 
curve of 25° (H. Meckel, 1976, in Ghetti 1987; 
pipe diameter equal to 2 m, mean velocity 
equal to 3.63 m/s), in case of fully developed 
turbulent motion.The k-ε turbulent model 
describes properly the generations of 
secondary currents that modify drastically the 
motion field. The differences compared to 
experimental data may also be due to the 
surface properties of the pipe, always 
considered smooth by the Comsol model. 

 
 

 
Figure 12: Comparison between experimental data 
(black lines in the figure; H. Meckel 1976) and 
numerical data of velocity distribution, downstream 
a curve in fully developed turbulence conditions. 

 
Case 2: double sharp curve.  
In Figure 13 the energy loss coefficient 

ξ (Eq. 02) due to a double sharp curve have 
been reported. The values calculated with the 
numerical simulations are compared with the 
values obtained on a physical model by 
Barberi s.r.l. (Barberi s.r.l., 2011). 

 
Figure 13: Estimation of coefficient ξ (Eq. 02) for a 
double sharp curve. Comparison between numerical 
data and laboratory experimental data (Barberi srl, 
2011). 

 
The numerical estimation and the physical 

model approximation appear in a quite good 
agreement when Reynolds number is larger 
than 10.000. At low Reynolds numbers 
differences are much larger. 

 
 

5. Conclusions 
 
The use of numerical methods available in 

Comsol (vers. 4.0–4.2) to the solution of the 
complicated equations of turbulence has 
shown some significant limitations for the 
current research. These include the inability to 
consider the rough walls in the k-ε and in the 
k- ε at low Reynolds numbers turbulent model 
and the strong dependence of the results from 
computing grid when using the k- ε turbulent 
model at low Reynolds number. 

The research is currently continuing, in 
situations where the methods are considered 
reliable, with the introduction of the equations 
describing the heat exchange between the 
different elements of the heat accumulation 
stoves. 
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