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Abstract:  In this paper we present an analysis 
that shows the Maxwell Fish Eye (MFE) only 
has super-resolution property for some 
particular frequencies (for other frequencies, 
the MFE behaves as conventional imaging 
lens). These frequencies are directly connected 
with the Schumann resonance frequencies of 
spherical symmetric systems. The analysis 
have been done using a thin spherical 
waveguide (two concentric spheres with 
constant index between them), which is a dual 
form of the MFE (the electrical fields in the 
MFE can be mapped into the radial electrical 
fields in the spherical waveguide). In the 
spherical waveguide the fields are guided 
inside the space between the concentric 
spheres.  A microwave circuit comprising three 
elements: the spherical waveguide, the source 
and the receiver (two coaxial cables) is 
designed in COMSOL. The super-resolution is 
demonstrated by calculation of Scaterring (S) 
parameters for different position of the coaxial 
cables and different frequencies of the input 
signal. 
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1. Introduction 
 

 “Perfect imaging” stands for the capacity 
of an optical system to produce images with 
details unlimited by the wavelength of light.  
Perfect imaging has been theoretically 
demonstrated in the last decade using materials 
with negative dielectric and magnetic constants 
[1][2]. The super-resolution (i.e., objects 
resolved below the diffraction limits) based on 
these materials has been shown experimentally 
[3][4], as well.  Unfortunately, high absorption 
and small (wavelength scale) source-to-image 
distance are inevitable in negative refraction 
[5].  

Recently, a new possibility for perfect 
imaging has been proposed using a material 
with a positive, isotropic and gradient 
refractive index: the Maxwell Fish Eye (MFE) 
lens. It is well known that, in the Geometrical 

Optics framework, the MFE perfectly focuses 
rays emitted by an arbitrary point of space onto 
another (its image point). Leonhardt [6] 
demonstrated that the MFE lens in two 
dimensions (2D) perfectly focuses radiation of 
any frequency between the source and its 
image for 2D Helmholtz fields (which 
describes TE-polarized modes in a cylindrical 
MFE, i.e., in which electric field vector points 
orthogonal to the cross section of the cylinder); 
this result has also been confirmed via a 
different approach [7].  

This “perfect focusing” stands for the 
capacity of an optical system to perfectly 
transport an outward (monopole) 2D 
Helmholtz wave field, generated by a point 
source, towards an “infinitely-well localized 
drain” (which we will call “perfect point 
drain”) located at the corresponding image 
point. That perfect point drain must be able to 
absorb totally all incident radiation, with no 
reflection or scattering, and the field around 
the drain asymptotically coincides with an 
inward (monopole) wave. Perfect focusing 
occurs in the MFE using perfect drains for an 
arbitrary frequency if they are located at the 
image point of the source.  

In this paper we present the results of the 
super-resolution analysis for microwaves of 
the Spherical Geodesic Waveguide (SGW), a 
device suggested in [14]. It is obtained via 
transformation optics from a MFE planar 
waveguide. The SGW is a spherical waveguide 
filled with a non-magnetic material and 
isotropic refractive index distribution 
proportional to 1/r (ε =(r0/r)2 and μ=1), r being 
the distance to the center of the spheres. 
Transformation Optics theory [16] proves that 
the TE-polarized electric modes of the 
cylindrical MFE [6] are transformed into 
radial-polarized modes in the SGW, so both 
have the same perfect focusing properties. 

When the waveguide thickness is small, the 
variation of the refractive index within the two 
spherical shells can be ignored resulting in a 
constant refractive index within the waveguide.  

Here, we have obtained that super-
resolution only occurs close to the discrete set 



of Schumann frequencies. Also it is 
demonstrated that the use of the perfect drain is 
not necessary. 
 
2. Spherical Geodesic Waveguide 

 
The Maxwell Fish-Eye (MFE) lens is a 

positive, isotropic and radial refractive-index 
which provides perfect imaging between two 
points in a plane, i.e., the rays issuing from a 
point (x0, 0) are perfectly focused at another 
point (a2/x0, 0). A cylindrical MFE is a lens 
with the following refraction index 
distribution: 
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where ρ is the distance to the origin. Leonhardt 
found that this perfect focusing property also 
holds in z-polarised waves [6]. The wave 
propagating (Leonhard’s forward wave [8]) 
from object point (x0, 0) into image point 
(a2/x0, 0), is given by 
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Here A is a complex constant, Pυ, Qυ are the 
Legendre functions [12], and z is a complex 
number defined as z=x+iy.  

Using Transformation Optics it was proven 
[14] that the fields given by Eq. (2) in a 2D 
MFE are transformed into radial fields in the 
SGW filled with a refractive index medium 
with law n(r) = an0/r (where r2=x2+y2+z2). The 
radial field E(r, ,)=Er(r, ,)r in the SGW is 
related to the MFE field (Eq. (2)) of the 
corresponding point by: 

 ( , , ) ( ) cosr zE r E       (3) 

Corresponding points in the MFE and 
SGW are related by a stereographic projection. 
Source and drain points (x0,0) and (-a2/x0,0) are 
transformed into opposite poles of the SGW. 
Leonhardt’s forward wave is transformed into 
a wave with rotational symmetry with respect 
to the line passing through object and image 
points. 

The SGW is bounded by two spherical 
shells made of conductors. Two coaxial probes 
loaded with their characteristic impedance 
have been used to simulate the source and 
drain in the SGW. The microwave prototype 

described in [10] and [11] was done in the 
same way. We will call them source port and 
drain port respectively. Both ports are 
geometrically identical. The drain port is 
loaded with its characteristic impedance Zo. 
The drain, (when is located at the image point) 
is not perfect, since it causes a reversed wave, 
as well [9]. Although there is no perfect 
focusing as defined before (i.e. full absorption 
of the forward wave), the SGW “senses”  small 
shifts (much smaller than wavelength) 
indicating super-resolution (see Section 3.). 
This has practical interest since there is no 
need for perfect drains [9]. 

 
Figure 1. Cross section of the two coaxial lines and 
the spherical waveguide (SGW). The power is 
injected through the source port, The radiation is 
guided between spheres and may be extracted at the 
drain port. 
 

Figure 1. shows the cross section of the 
SGW with the two coaxial probes simulating 
the point source and the point drain. The 
radiation is injected through the source port, 
guided between spheres, and may (or not) be 
extracted from the sphere through the drain 
port. When the angle d = the drain port is 
located at the image point and the fields will 
have rotational symmetry. For d ≠, the 
rotational symmetry is broken. 

The frequencies used in the analysis are 
low enough so only TEM modes propagate in 
the coaxial cables. Therefore, the complete 
system can be analyzed as a microwave circuit 
using the classical scattering matrix S [15]. 
Figure 2. shows the equivalent circuit.  

 
Figure 2. Microwave circuit made up of the two 
ports and the spherical waveguide. The sphere S 
completely characterized with the S matrix. 
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The matrix S of the sphere is defined as: 
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When the drain port is matched with its 
characteristic impedance Zo, there is no 
reflected wave in this coaxial line and thus the 
voltage and current waves Vd+ and Id+ are 
null: 
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The power injected through the source port PI, 
transmitted to the drain port PT and reflected 
by it PR are:  
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3. Simulations in COMSOL Multiphysics 
 

The simulation has been done using 3D RF 
Modul in COMSOL Multiphysics. The SGW 
has been modeled with the following 
geometrical parameters (see Figure 1.):  
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The refractive index between the spherical 
shells should be n(r)=an0/r. However, as 
commented before, since RM/Rm 1 we have 
made an approximate model having n=1 inside 
the waveguide.  

The SGW model has been analyzed using a 
frequency range from 0.2 GHz to 0. 4 GHz (λ 
between 0.75 m and 1.5 m), which is well 
below the cut-off frequency of next higher 
order mode in the coaxial cables (the cut-off 
frequency ~(2c/)/(De+Di) = 112.7 GHz [15]).  

The port radius (De) is less than λ/100 for 
the analyzed frequencies and the ratio 
De/Rm<<1, which means that we have modeled 
the point nature of source and drain 
successfully. The coaxial lines are 20 mm 
long, which is enough to guarantee the 
evanescent modes in the coaxial lines are 
negligible at their ends. The conductor has 
been designed as a zero-thickness ideal metal 
sheet. 

Special care has been taken to define the 
mesh of the system. In order to mesh the guide 

properly, the geometry has been divided into 
few domains. Each domain is meshed 
separately according to its geometric and 
physical properties. Since the guide thickness 
is very low (RM-Rm)/Rm<<1, the SGW is 
meshed using a swept mesh (2D triangular 
mesh from the outer surface is swept to the 
inner surface, as presented in Figure 3.). On 
the other side, the coaxial cables are meshed 
with higher density using 3D tetrahedra. The 
mesh density is increased since the change of 
the Electrical field is significant in the 
neighbourhood of the coaxial cables. 

 
Figure 3. Mesh structure. (a) SGW with coaxial 
cables, (c) close up of a piece of spherical shells, (c) 
close up of one coaxial cable from outside the 
sphere 
  

Several simulations have been made to 
analyze the imaging properties of the system. 
We have used |S21|

2 to determine the sensitivity 
of the transmitted power PT (which is 
proportional to |S21|

2, see Eq. (6)) to the drain 
port position. 

Figure 4. shows |S21|
2 for a frequency range 

between  0.2 GHz and 0.4 GHz when the drain 
port is placed at the source’s image point, that 

(a) 

(b) 

(c) 



is,  =0 for the source port and  = for the 
drain port. There are peaks of |S21|

2 indicating 
total transmission from the source port towards 
the drain port, resembling the transmission 
diagram of a Fabry-Pérot resonator (see for 
instance [17]). These peaks occur at the well-
known Schumann resonance frequencies of the 
spherical systems [18], which correspond to 
integer values of  from the next equation [9] 

  2

0 ( 1)MR k     (8) 

where  0 0 02k f   . 

 
Figure 4. |S21|

2 as function of frequency when the 
drain and source ports are at opposite poles. The 
peaks occur at the Schumann resonance frequencies. 
 

Figure 5. shows |S21|
2 when the drain port is 

shifted λ/30 (for λ=1m corresponding to 0.3 
GHz) away of source port antipode. Although 
the results are extremely similar, narrow 
notches in the transmission very close to the 
Schumann frequencies occur. These notches 
are getting wider when the drain port is shifted 
further from the source’s image point (see 
Figure 6.). 

 
Figure 5. |S21|

2 vs frequency when the drain port is 
shifted λ/30 (λ=1.15 m) from the source port 
antipode. The results are similar to those presented 
in Figure 4. in accordance with the classical 
prediction, except for the very narrow notches near 
Schumann frequencies. 
 

Figure 6. shows |S21|
2 for different drain 

port positions in a very narrow band in the 
neighborhood of the Schumann frequency 

corresponding to the second peak in Figure 5. 
(for which  =5). The label of each curve 
indicates the distance between the drain port 
center and the source port antipode. The black 
curve corresponds to the drain port placed in 
the source port antipode (it looks flat because 
of the high zoom in the frequency axis). The 
other curves correspond to different shifts of 
the drain port. The shifts are in all cases much 
smaller than wavelength (λ=1.15084047 m that 
correspond to f=0.2606873 GHz). These 
results are quite surprising, since close to a 
specific frequency the power transmitted to the 
drain port suddenly reduces to a value near 
zero, indicating super-resolution. 

 
Figure 6. Detailed picture of |S21|

2 as function of the 
frequency in a narrow band around a Schumann 
frequency for different drain port positions (the 
corresponding shift on the inner sphere of the SGW 
between the drain port centre and the source port 
antipode has been used for labelling). 
 

Figure 7. shows the same information as 
Figure 6. but plotting |S21|

2 vs the drain port 
shift (expressed in units of λ) and using the 
frequency as a parameter. All the chosen 
frequencies are slightly above the Schumann 
frequency (graphs for frequencies slightly 
below are quite similar). 

 
Figure 7. |S21|

2 as function of the drain port shift for 
different frequencies that present super-resolution of 
between λ/30 and λ/500. 
 

Let us define “resolution” as the arc length 
that drain port needs to be shifted so |S21

|2 
drops to 10%. From the orange to the red 
curves, increasing super-resolutions are 



achieved: 0.03 λ (that is, λ/33) for the orange to 
λ/500 for the red. The latter, whose frequency 
f=0.26068741 GHz corresponds to  =4.99636) 
is the highest resolution that we have obtained. 
Computations for frequencies closer  =5 show 
essentially null |S21|

 values for shifts > λ/500 
(as in the red line in the picture), but also 
instabilities in the |S21|

2 values for shifts below 
λ/500.  

Clearly from Figure 6., one concludes that 
the higher the resolution, the narrower the 
bandwidth. The bandwith has been calculated 
as fmax−fmin with fmax and fmin fulfilling 
|S21(fmax)|

2=|S21(fmin)|2=0.1.  
The λ/500 resolution is achieved inside a 

narrow bandwidth of 20 Hz. The lowest 
resolution presented in Figure 6. (the λ/33 
resolution) is obtained inside a bandwidth of 
5810 Hz. 
 
4. Conclusions  

 
Simulations of the spherical waveguide 

(SGW) show super-resolution up to /500 
(near to the Schumann frequency). However, it 
is obtained only inside a narrow band (width  
20 Hz). If larger bandwidths are needed, lower 
resolutions (but still sub-wavelength) are 
achieved. Far from a Schumann frequency, no 
super-resolution is observed. The super-
resolution is achieved using an approximate 
model of the SGW (the model having n=1 
inside the waveguide) without perfect drain. 
This is obviously very attractive from the 
practical point of view. The waveguide can be 
manufactured with just two concentric metallic 
spheres separated at a distance much less than 
the radius and constant refraction index 
between them.  
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