

Numerical model for rocking of a mono-pile in a porous seabed

D-S Jeng, X-D Luo and <u>J-S Zhang</u> Division of Civil Engineering, University of Dundee, UK

18th November 2010

1

Outline

- 1. Introduction
- 2. Theoretical formulations
- 3. Numerical results
- 4. Conclusions & future work

1. Introduction

Offshore windfarm system

http://www.offshorewindfarms.co.uk

1. Introduction

Foundation of offshore windfarm system

http://www.offshorewindfarms.co.uk

1. Introduction

Rocking of mono-pile structure

5

(1) Structure mode

• The structural mechanics theory is based on a weak formulation of the equilibrium equations expressed in the global stress components.

$$-\nabla \bullet \sigma = \vec{F}_m$$

in which \vec{F}_m denotes the periodic volume forces from external wind.

(2) Flow mode

- Reynolds-Averaged Navier-Stokes (RANS) equations
- Sponge layer at two sides for damping flow energy

(3) Seabed mode

Biot's poro-elastic theory

 $\nabla^2 p - \frac{\gamma_w n_s \beta_s}{K} \frac{\partial p}{\partial t} = \frac{\gamma_w}{K} \frac{\partial \varepsilon_s}{\partial t} \quad \text{p: rocking-induced pore pressure}$

$$G\nabla^2 u_s + \frac{G}{1 - 2\mu_s} \frac{\partial \mathcal{E}_s}{\partial x} = \frac{\partial p}{\partial x}$$

u_s: soil displacement in x-direction

$$G\nabla^2 w_s + \frac{G}{1 - 2\mu_s} \frac{\partial \varepsilon_s}{\partial z} = \frac{\partial p}{\partial z}$$

w_s: soil displacement in z-direction

Boundary conditions (conducted in COMSOL)

Γ1-2: sponge layer; Γ3: zero air pressure; Γ4: no-slip, flow pressure and shear stress to seabed mode; Γ5: no-slip, periodic wind force to structure; Γ6: impermeable sea bottom;
Γ7-8: fixed wall; Γ9: no-slip, structure deformation to seabed.

Table 1: Structure and soil characteristics	
Mono-pile diameter	6 m
Height above sea floor	25 m
Seabed thickness	25 m
Soil porosity	0.3
Shear modulus	10 ⁷ N/m ²

Table 2: Parametric studies	
Soil permeability	9.0E-3 ~ 1.5E-2 m/sec
Multi-layer soil	One-layer & two-layer
Degree of saturation	85% ~ 100%
Embedded depth	5.0 ~ 8.0 m
Rocking period	4.0 ~ 8.0 sec
Rocking amplitude	0.05 ~ 0.1 m

Distribution of rocking-induced pore pressure

t=T/4

t=T/2

t=3T/4

Effect of soil permeability on maximal pore pressure

Effect of multi-layer soil on maximal pore pressure

Upper 2m soil with Ks=9.0E-3m/sec and the rest with Ks=8.4E-4m/sec $_{14}$

Effect of saturation degree on maximal pore pressure

Effect of embedded depth on maximal pore pressure

Effect of rocking period on maximal pore pressure

- The COMSOL Multiphysics has a good potential in modeling the rocking-induced seabed response.
- The seabed properties, structure dimensions and rocking parameters may significantly affect the rocking-induced maximal pore pressure.
- Further development and detailed validation of this integrated model are needed.

Many thanks for your attention!