12a

Traveling-Wave Electro-osmotic Micropumps

Jiri Hrdlicka Department of Chemical Engineering Institute of Chemical Technology Prague

NCT PRAGUE

OF CHEMICA

Outline

AC electro-osmotic micropumps: function, geometry & model

COMSOL Multiphsics: software implementation

Results: postprocessing

Conclusions / Summary

AC electro-osmotic micropumps Function, structure & building blocks

 $ilde{H}_{
ho}$

 \widetilde{H}

Electrode arrays

 L_{e}

- periodic
- asymmetry
- electrolyte

The electrode-electrolyte interface A complete electric double-layer

Mathematical Model

Software Implementation Use of COMSOL Multiphysics

Used Software

- Matlab
- COMSOL Multiphysics

Stage-wise simulation

- BCs are switched each period-quarter
- End state becomes the initial state

System Geometry Domain subdivision for a detailed study

Domains

- electrodes
- dielectrics
- electrolyte

Subdomains

- metal EDL parts
- electrolyte EDL parts

71

Discontinuous driving implementation Use of COMSOL Multiphysics

The average velocity transient At optimal frequency of the AC signal

The electric potential

У

The electric charge density

У

The pressure

у

The electric current

The flow patterns

Conclusion

Model formulated in the weak form: wider set of boundary conditions available

Michochannel surroundings added: electrode and dielectric blocks included in the model

Additional driving modes: sinusoidal, square waveform and discontinuous signals