Simulating the Electrical Double Layer

Guigen Zhang, Ph.D.

Dept. of Bioengineering, Dept. of Electrical & Computer Engineering Institute for Biological Interfaces of Engineering Clemson University

Overview

- The drive to make supercharge capacitors
 Electrochemical based capacitor
 The structure of electrical double layer (EDL)
 The effect of EDL structure on electron transfer
- The EDL capacitor
- Conclusions

Making Supercharge Canacitors

The Electrochemical Society Interface, Fall 2008

Electrochemical Based Capacitor

- This topic has been a major interest in electrochemistry for about a century
- In 1997, the Electrochemical Society sponsored a symposium on the double layer to recognize the 50th anniversary of Grahame's seminal work

$$C = \mathcal{E}_0 A / d$$

Electrical Double Layer (EDL)

The EDL structure

Helmholtz Model

Gouy-Chapman Model

Gouy-Chapman-Stern Model

Problems with the classic theories on electrical double layer (EDL):

- 1. No electron transfer across the electrode/solution interface
- 2. Boltzmann distributions for ions in the solution
- 3. Electro-neutrality

Modeling the EDL Using COMSOL

Mass transport by diffusion and electromigration

Nernst-Planck equation

Electrostatics

Poisson equation

$$\frac{\partial c_i}{\partial t} = \nabla (D_i \nabla c_i + \frac{z_i F}{RT} D_i c_i \nabla V)$$
$$\nabla (\varepsilon \varepsilon_0 \nabla V) = -\rho$$

In the compact layer: $\rho = 0$ In the solution: $\rho = \sum z_i c_i$

Reversible/irreversible systems

Butler-Volmer kinetics

$$O^{z} + e^{-} \xleftarrow{k_{f}}_{k_{b}} R^{z-1}$$

$$k_{f} = k_{0} \cdot \exp[-\alpha F(E_{t} - V - E^{0'}) / RT]$$

$$k_{b} = k_{0} \cdot \exp[(1 - \alpha)F(E_{t} - V - E^{0'}) / RT]$$

Modeling Using COMSOL

Dielectric constant inside the compact layer

The Size Factor of the EDL

$$\delta_{1nm}^{diffuse} = 1.8 \,(\text{nm}), \ \delta_{100nm}^{diffuse} = 4.5 \,(\text{nm})$$

 $\delta_{1nm}^{diffusion} = 14 \,(\text{nm}), \ \delta_{100nm}^{diffusion} = 820 \,(\text{nm})$
~13% ~0.5%

EDL Effect on Electron Transfer

Effect of electrode size

Effect of compact layer thickness

Note: "Diffusion" represents the case in which the EDL effect is not considered.

Effects of EDL

EDL Capacitance: A Surprise

Conclusions

EDL capacitance varies as a function of

- Dielectric constant
- Compact layer thickness
- Electrode size
- Electrolyte concentration
- When redox is allowed, the capacitance-potential curve exhibits a dip feature near the potential of zero charge
- This study shed some new light into enhancing the supercharge capacitors

Acknowledgement

National Science Foundation

Bill & Melinda Gates Foundation

Thank You!