A Study of Seismic Robot Actuation Using COMSOL Multiphysics

Samara L. Firebaugh, Elizabeth A. Leckie, Jenelle A. Piepmeier, and John A. Burkhardt *United States Naval Academy*

> COMSOL Conference 2010 October 7, 2010

Microrobotics

 Applications in microsurgery, microassembly, and sensor swarms.

Adriano Cavalcanti, "Nanorobotics," Nanoscience Today, September 2004, http://www.geocities.com/cbicpg/nanoscience/NST2004/nanorobots.htm

brianholmes.wordpress.com

Microrobot Power and Control

- How to power and communicate with micro robot? Use a global energy field
- Electromagnetic?
- Electrostatic?
- Vibration?

Image from Donald *et al,* "Power Delivery and Locomotion of Untethered Actuators, "*J. Microelectromech. Syst.,* **12**, 947-959 (2003).

Image from Vollmers *et al.*, "Wireless Resonant Magnetic Microactuator for Untethered Mobile Microrobots," *Appl. Phys. Lett.*, 92, 144103 (2008).

Seismic Actuation

- Why hasn't seismic actuation been more explored?
 - Surface:volume ratios go up with miniaturization
 - So friction forces dominate over inertial forces
- Then why use seismic actuation?
 - Minimally invasive.
 - "Easy" adaptation to existing ultrasonic medical equipment.
- Need to better understand physics

The Jitterbot: a mesoscale seismic robot

Mesoscale facilitates rapid manufacture and characterization

Jitterbot Features

- Tripod body with two extended arms
- Body tilts backwards to facilitate transduction of vertical vibration into forward motion
- Arms designed for different resonant frequencies
- Simple mass-spring analysis used to design arms for resonance at ~140 Hz (right) and ~200 Hz (left)

-0.01

0.01

Test System

Fiber Optic

Sensor

Electrodynamic Shaker

Vertical vibration field, with frequency varying from 10 to 2000 Hz

Results

- Clockwise rotation and translation at 97, 236, 810 Hz.
- Counterclockwise rotation at 1090 Hz.

1090 Hz

Modeling in COMSOL

- Eigenmode analysis
- Moving mesh (ALE) used to compute center of mass.
- Boundary conditions set up to allow for rocking

Eigenmode Analysis

- Eigenmodes at 320, 424, 861 and 1016 Hz
- 320, 424 and 861 Hz mode consistent with clockwise turn (CoM shifts up and to the right)

Eigenmode Analysis, cont.

 1016 Hz mode consistent with counter-clockwise turn (CoM shifts up and to the left)

1016 Hz Eigenmode

Summary

- COMSOL makes reasonable prediction of critical frequencies.
- Rocking boundary condition essential for match.
- Future work will focus on scaling and on quantifying forces.

Experimental	COMSOL
Frequencies	Eigenfrequencies
97 Hz (CW)	
236 Hz (CW)	320 Hz (CW)
693 Hz (CW)	424 Hz (CW)
810 Hz (CW)	861 Hz (CW)
1090 Hz (CCW)	1016 Hz (CCW)

Acknowledgements

- Project sponsored by the Dept. of the Navy's Program Executive Office for Integrated Warfare Systems (PEO/IWS)
- Matt Stanley, USNA Machine Shop
- Anders Ekerot at COMSOL