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Abstract: The understanding of quench, or the 
sudden transition to the normal state of a 
high-current superconductor (SC), is 
fundamental for the design of a SC magnet, and 
it is widely discussed in the literature. 

This paper presents some simple 
COMSOL™ models, which are compared with 
well-known approximate formulae and some 
experimental results. These models allow a more 
precise description than it is usually done by 
means of the analytical expressions, and may 
describe more difficult scenarios, like those 
involving magnetic diffusion. 
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1. Introduction 
 

A typical high current superconducting wire 
can transport current density in the range of 
100 - 1000 A/mm², but this is not a stable 
condition from a thermodynamic point of view: a 
small rise of the temperature in a limited section 
may force it in the normal state. The high Joule 
dissipation that takes place heats the nearby 
zones, creating a normal zone which becomes 
larger and larger, until it eventually encompasses 
the whole superconductor.  

In a real magnet, this temperature rise could 
be generated by a tiny energy release, like that 
produced by a wire movement under the effect of 
the Lorentz forces. 

The understanding of this avalanche 
phenomenon, known as quench, is fundamental 
for the design of a SC magnet, and it has been 
widely discussed in the literature since the 
beginning of the practical exploitation of the SC. 

This paper presents two fairly simple models, 
which describe the quench in different 
conditions, and namely: 
1-D model. Here we describe the quench as 
governed by the longitudinal (i.e. along the wire 
axis) thermal diffusion only. 
2-D model. The cross section of some wire is 
large enough, and its resistance low enough, that 

a description of the magnetic diffusion, also in 
the normal direction (i.e. transversally w.r.t. the 
wire axis), must be included. 
Each of these models is appropriate for different 
classes of high-current superconductors. 
 
2.  1-D Model 
 
2.1 Governing Equations 

 
In this case, the quench propagation is 

determined essentially by the longitudinal 
thermal diffusion (Eq. 1). The superconducting 
dynamics is introduced by Eq. 2 which describes 
the current flowing without losses inside the SC 
filaments (ISC); the current in excess is carried by 
the resistive matrix, giving origin to heating 
through Joule dissipation. Symbols used 
throughout this paper are explained in the 
Appendix. 
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2.2 Quench propagation traditional approach 
 

A simplified solution of Eq. 1 and Eq- 2 
[1, page 204 and ff] gives the following formula 
for the quench propagation velocity: 
 

0TT
k

C
J

v
s

thel

pm

op
q −
=

ρ
ρ

             (3) 

 
The quench speed does not depend on the 

features of the initial normal zone, provide that it 
has a size larger than a characteristic value, 
known as Minimum Propagating Zone (MPZ): a 
normal zone smaller than the MPZ simply 
decays, and the superconductor returns to the 
environment temperature. The typical length ℓ of 
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the MPZ can be estimated through [1, page 76, 
Eq. 5.2]: 

 
 

              (4) 
 
 
2.3 Use of COMSOL™ Multiphysics  
 
 Simulations have been performed by means 
of  COMSOL™ 3.5 Convention and Conduction 
(cc) mode. Standard values for the linear system 
solver (UMFPACK)  have been retained. 

Boundary conditions impose a zero heat flux 
at the left boundary (x = 0), and a fixed 
temperature on the right boundary. The former 
condition requires that the quench starts at x = 0, 
propagating symmetrically rightward and 
leftward; the latter imposes that the simulation 
ends before the normal zone reaches the right 
boundary. 

To start the quench, we need to impose an 
hot spot at x = 0, described in §2.4. 

The simulation was performed on a 1 m long 
wire. 
 
2.4 Superconducting wire properties, 
simulation conditions and results 
  

We simulate a quench propagation on a 
typical NbTi superconducting wire operated at 
4.22 K in an external background field of 5 T, a 
most standard scenario for accelerator magnets. 
Its properties are listed in Table 1. 

 
Table 1: Salient features of the superconducting 
wire used in the 1-D simulations. 
  

Wire diameter 0.8 mm 
NbTi volume fraction 0.40  
Critical current @ 4.2 K, 5 T 500 A 
Operating current 400 A 
Average density 7790 kg/m³ 
Copper RRR 100  

 
We used our routine library routine to 

compute the material properties of the copper 
and NbTi constituting the wire in the temperature 
range 4 K – 300 K. We trigger the quench 
imposing as initial condition an hot spot centered 
at  x = 0, having a peak temperature of 8 K, and a 
guassian shape with a r.m.s. of 5 mm. Fig. 1 

shows the normal zone propagation during the 
quench, moving steadily rightward, while the 
temperature continues to rise in the quenched 
section, as a result of the Joule heating. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The normal zone propagation during a 
quench. Temperature profiles along the conductor are 
computed every 0.001 s. They are shown in red to 
violet, passing from t = 0 s to t = 0.02 s. 

 
The abscissa  of the arbitrary temperature of 

8 K of each quenched profile is shown, as a 
function of time, in Fig. 2, which demonstrates 
that the quench moves steadily with a speed of 
36.4 m/s. This result is in excellent agreement 
with the value predicted by Eq. 3, 32 m/s, 
considering the approximate nature of Eq. 3. 
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Figure 2. Quench front position from Fig. 1, as a 
function of time. 

 
We have estimated the size of the MPZ 

performing simulations with a progressively 



s
k

Cd
D

d

sd
D

d

th

pm

elm
m

5
2

2

2

2

2
0

2

2

2

104

3.0

−×≈==

≈==

π
ρ

π
τ

ρπ
μ

π
τ

ϑ
ϑ

s
v
d

s
v
d

q

q
m

3

3

10

10

−

−

≈<<

≈>>

ϑτ

τ

0.000 0.002 0.004 0.006 0.008 0.010
x @mD4

5

6

7

8

9
T @KD

smaller initial normal zone, until the quench does 
not develop any more and the temperature 
returns to the environmental value, as it is shown 
in Fig. 3, where the Gaussian r.m.s. of the initial 
normal zone was fixed at 0.623470 mm. This 
somewhat artificial value has been chosen 
because it is only slightly smaller than the MPZ: 
when the initial normal zone r.m.s. is increased 
to 0.623475 mm a quench develops and the 
normal zone propagates at the same speed as in 
Fig. 1, where the initial normal zone is about ten 
times larger.  

The MPZ total length computed through 
Eq. 4 is 1.7 mm, or about 3 times the r.m.s. value 
found here: also in this case the agreement is 
extremely good. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
Figure 3. A quench does not develop if the initial 
normal zone is smaller than the MPZ. Temperature 
profiles along the conductor are computed every 
0.002 s. 
 
3.  2-D Model 
 
3.1 Superconducting Al-stabilized cables  
 

Large (25 m) superconducting magnets, like 
those used in the particle detectors, exploit 
cables made of many (10-40) single wires, each 
similar to that of the 1-D case, twisted and 
compacted to form the so called Rutherford 
cable. The Rutherford cable is clad by a high 
purity aluminium matrix, whose purpose is to 
stabilize and protect the superconductor in case 
of a quench. 

As an example, the conductor of the ATLAS 
Superconducting Toroidal Magnet at the LHC 
(CERN) is shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. A transverse section of the ATLAS 
conductor. The NbTi, 40 strand, superconducting 
Rutherford cable is visible at the centre, surrounded by 
a high-purity Al matrix. 
 

In order to describe the quench in such 
cables, it is crucial to appreciate the role of the 
transverse (w.r.t. the cable axis) magnetic and 
thermal diffusion time constants, τm and τm , 
whose values are respectively: 

 
 
 
 

. 
 
 
Knowing that the normal zone propagation 

speed is, for this kind of conductor, of the order 
of 10 m/s (see §3.5), we see that: 

 
 
 
 
 
 

which indicate that while the transverse thermal 
diffusion is almost instantaneous w.r.t the normal 
zone propagation, the magnetic diffusion is 
much slower. The latter fact implies that a proper 
2-D description of the magnetic diffusion is 
mandatory for the Al-stabilized conductors. 
 In our case, for sake of simplicity, we use 
2-D geometries for both the magnetic and the 
thermal cases, even if a more efficient and 
elegant solution in COMSOL™  would probably 

dd



be constituted by a magnetic 2-D model coupled 
to a 1-D thermal model. 

 
3.2 Geometrical Model 
 
A 2-D approximation of the cable geometry is 
used, as described in Fig. 5. The system is 
assumed to be symmetric with respect to the x-y 
plane. The matrix cross-section ABCD has an 
area equal to half of the conductor matrix 
section: in this way we can think of the 
conductor as a section of a infinite system along 
the z direction. In this way, we regard the system 
as invariant along z, and we can consider a 2-D 
model including only the x and y space 
coordinates. We also assume a symmetry across 
the x-z plane. The geometrical model used in 
COMSOL™  is therefore the rectangle BDEF 
whose length along x has been, quite arbitrarily, 
fixed to 4 m. 

The Rutherford cable itself is not part of the 
geometry, and the superconductor’s properties 
are introduced as a proper boundary condition on 
side CD. 
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Figure 5. Geometrical model of the cable used in the 
2-D simulations. The current flows along the 
x-direction. 
 
 
3.3 Governing Equations 
 

Here we must introduce explicitly the 
current, along with the heat, diffusion.  

Since the geometry is 2-D, with x-y 
coordinates, the ∂z‘s are zero for symmetry and 
the Bx and By components of B

r
 can be set equal 

to zero. Therefore B
r

 = Bz k
r

. 
We have now Eq. 5 for the heat diffusion, 

where the source (right) term describes the Joule 
dissipation; the current is related to the magnetic 
induction B

r
 through Ampère’s law (Eq. 6). 

Magnetic diffusion is described by Eq. 7. The 
superconductor dynamics is introduced by Eq. 8, 
similarly to what was done  for the 1-D model 
with Eq. 2.  
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As it can be seen, this is an intrinsically 
“multiphysics” problem, since the T and B 
variables are coupled in the heat diffusion 
equation. 
 
 3.4 Boundary conditions 
 

Thermal insulation boundary conditions for 
the thermal equation (Eq. 5) are applied to all the 
four sides, since the heat source and diffusion are 
limited within  the superconductor. For 
symmetry reasons, no heat flow takes place also 
across the BD side, provided that the initial 
normal zone is symmetric w.r.t. x = 0. 

Eq. 6 provides the boundary condition for the 
magnetic induction equation (Eq. 7). 
Considering the remarks made in §3.3 Eq. 6 
becomes: 
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and when integrated between 0 and y, it gives the 
following expression: 
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From this, keeping into account the current 
which is flowing inside the superconducting 
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Rutherford cable, it is possible to write the 
B.C.’s on the rectangle’s sides, namely: 
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The second equation holds only if all the current 
flows into the superconductor, i.e. only if the 
normal zone is still far from the right end. The 
last equation comes from the condition Jy = 0 at 
x = 0. 
 
3.5 Simulation conditions and results. 
 

In the simulations, we have assumed the 
characteristics of the conductor of the End Cap 
Toroid of the ATLAS detector at LHC, CERN. 
Its salient features are described in Table 2. The 
RRR includes the effect of the 
magnetoresistance, assuming its average effect 
between 1.2 T and 3 T for a zero-field RRR 
value of about 1,300. 
 
Table 2: Salient features of the superconducting cable 
used in the 2-D simulations. 
 

Conductor size 41 x 12 mm² 
Rutherford cable critical 
current @ 4.2 K, 5 T 

58,000 A 

Aluminium RRR, including 
magnetoresistance 

450 ─ 

Operating temperature 4.8 K 
 
Simulations between 24 kA and 10 kA were 

performed, in order to compare the results with 
those reported by [2].  

The details of the conditions are reported in 
Table 3. The intensity of the magnetic field has 
been computed scaling properly the value quoted 
by [2, page 1549]. Critical temperature and 
critical currents have been computed using the 
formulae reported by [3] and [4], assuming the 
nominal critical current from Table 2. 

Quench was triggered imposing, as initial 
condition, a gaussian-shaped hot spot region,  
centered at x = 0, whose r.m.s was 0.2 m and 
having a peak temperature of 9.8 K (or 5 K 

higher than the environment). In the case of  the 
10 kA simulation, it was necessary to increase 
the r.m.s. of the initial normal zone up to 0.40 m, 
to exceed the MPZ. 
  
Table 3: Simulation parameter list and results 
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10,000 1.208 8.740 137,663 2.9 
15,000 1.813 8.503 110,056 8.6 
20,000 2.417 8.262 91,367 16.6 
24,000 2.9 8.065 79,741 25.0 

 
As an example, temperature profiles for the 

simulation at 20 kA, computed every 0.01 s, are 
shown in Fig. 6.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Temperature profiles, computed every 
0.01 s from t = 0 s until t = 0.15 s, for the simulation at 
20 kA. 

 
It is apparent that, after a short initial 

transient, the normal zone front moves steadily. 
The computed velocities are reported in Table 3 
and are also shown in Fig. 7, along with the 
experimental results [2, Fig. 5].  

The agreement is quite good, and it could 
even be improved if we introduced the heat 
capacity of the Rutherford cable, which would 
increase by about 25% the overall thermal 
capacity, lowering accordingly the quench 
velocity. Nonetheless we should be extremely 
cautious about the accuracy of these simulations,  
keeping in mind that they depend on a rather 



larger number of factors, often not precisely 
known, and that a parametric study of the 
influence of their uncertainties on the results has 
not been done, nor it was in the scope of this 
work. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 7. Quench propagation speed measured on the 
ECT conductor by [2] (triangles), superimposed to the 
results of our simulations (red rings). 

 
A detail of the current and temperature 

distribution close to x = 0 at t = 0.1 s is shown in 
Fig. 8. We notice that the temperature is constant 
along the y direction, while the current has not 
yet redistributed homogenously, as it was 
explained in § 3.1. 

  
 
 
 
 
 
 
 
Figure 8. Current (represented by white arrows, 
whose length is proportional to the module of the 
current) distribution in the conductor, between x = 0 m 
and x = 0.05 m, after 0.1 s, for the simulation at 20 kA 
shown in Fig. 6. The current has not yet distributed 
homogeneously transversally (i.e. along the y axis). 
On the contrary, the temperature is constant to less 
than 10 mK. 
 
4. Conclusions 
 

The results of quench numerical simulations 
performed with COMSOL™  are compared with 
well known analytical approximate expressions 
for the 1-D case and with some experimental 
results for the 2-D case. The use of COMSOL™  

models gives a better insight of the phenomenon, 
and it allows to simulate more complex cases 
where the simpler analytical formulae are not 
applicable. After suitable adaption, these models 
could be used to simulate the quench in scenarios 
with, e.g., thermal exchange on the 
superconductor’s surface or broader 
superconductor to normal transition curves. 
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7. Appendix 

 
Table 4: List of symbols used in the paper. 
 
ρm mass density 
ρel electrical resistivity 
kth thermal conductivity 
Cp Specific heat 
ISC current flowing in the superconducting 

regions only 
Iop total (external) current in the SC wire 
Tc superconductor’s critical temperature  
Tg generation temperature (when the 

current begins to flow into the resistive 
matrix, starting the heating by Joule 
dissipation ) 

Ts = (Tc + Ts )/2 
A Superconductor cross-section area 
d Superconductor height (see Fig. 4) 
vq Normal zone propagation speed 
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