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 Applications that do not allow for cabled solutions

 Applications in environments incompatible with active electronicspp p

 Mechanical resonator sensors are in principle suitable:
 The resonant approach is robust
 The resonant frequency does not depend on the detection technique
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 The resonant frequency does not depend on the detection technique 
adopted



Magnetic Films

Contactless Magnetic Excitation
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Incompliant with traditional 
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Holder

Unsuitable for contactless 
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Proposed Approach
 Contactless excitation of mechanical resonances in microstructures

 E l it ti f th i t ti b t t l DC AC ti fi ld Exploitation of the interaction between external DC or AC magnetic field 
with AC currents inductively coupled to the resonator

 No specific magnetic property is required
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 The resonators are required to be only electrical conductive



The excitation principle
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 B : radial component of the excitation
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 B0r: radial component of the excitation 
magnetic field.



Simulation of the excitation principle
 Axial symmetry geometryVertical force  Axial symmetry geometry

 AC  Simulation

 Evaluation of

Rc

 Trend of the magnetic field

 Magnitude of the induced eddy current

 Magnitude of F component of force

LCoil

 Magnitude of  Fz component of force

hh

Rd

Resonator

 Coil radius Rc=2.5 mm

 Distance h=5 mm

 Maximum of the force for R =5 mm

Comsol Conference 2009,  October 14-16, 2009, Milan, Italy 5/11

 Maximum of the force for Rd=5 mm



Simulation of the excitation principle
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 Maximum of the force for Rd=5 mm 0.E+00 5.E-03 1.E-02 2.E-02 2.E-02
Radius Rd (m)



Clamped-clamped resonator

Experimental results on miniaturized resonators
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 Clamped-clamped titanium beam 
 Titanium parameters:E=105 x 109 Pa, ρ=4940 kg/m3, σ=7.407 x 105 S/m
 Dimensions: 17 mm x 1.4 mm x 100 μm 
 Excitation:  35 V (rms)/ 26 mA (rms)
 Excitation distance: 2 mm
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 Excitation distance: 2 mm
 Optical system for the frequency characterization of resonators 
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 Excitation distance: 2 mm
 Optical system for the frequency characterization of resonators 



Effects of the downscaling of the dimensions of the resonators

MEMS Design
Effects of the downscaling of the dimensions of the resonators
 Reduction of the total magnetic flux linked to the structures

 Decrease of the induced eddy-current density
 Decrease of the Lorentz force

 Increase of the mechanical stiffness

Section Area

Anchor Conductive path
Proposed solution: conductive path 
on the surface of the cantileverSection Area

of the coil  Connection with a collecting flux 
coil
 Multiple transversal paths for the

Cantilever

Collecting
flux coil

 Multiple transversal paths for the 
distribution of the circulating 
currents
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Cantilever



 Design of the conductive paths:

Simulation of MEMS devices

w  Design of the conductive paths:
 Choice of width wi and reciprocal 
distance dij

 Constraint of equal distribution of

wi

 Constraint of equal distribution of 
the circulating current in each path

dij

 Ehf
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 Design of the conductive paths:

Simulation of MEMS devices
 Design of the conductive paths:

 Choice of width wi and reciprocal 
distance dij

 Constraint of equal distribution ofN I(A)  Constraint of equal distribution of 
the circulating current in each path

 AC electrical simulation with unity 
current impressed

N I(A)
1 0.267
2 0.249
3 0.251
4 0 2334 p

 Computation of the current in the 
transversal paths

4 0.233
1 2 3 4

 Estimation of the resonant 
frequencies of the structures with the 
conductive paths
 Si l ti f 1500 700 15

 Ehf

 Simulation for a 1500 x 700 x 15 µm 
cantilever
 Value from the theoretical 
predictions: 9200 Hz
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L
fris 2predictions: 9200 Hz

 Value from the simulation: 9404 Hz



Process of the CNM (Centro

Fabrication of MEMS devices

P l ili
(

Nacional de Microelectronica) of
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Bulk-micromachining process
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Insulator) substrate with <100>

i t ti
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Buried Oxide

Crystal Silicon

Contact

Metal 1

Via

orientation
5 photolithographic masks (1

polysilicon, 2 metals)

 Die with 4 cantilever

 On-chip conductive paths

 On-chip collecting flux coil

 Half-bridge configuration of polysilicon 
piezoresistor
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piezoresistor
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Experimental results on MEMS resonators
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 Contactless Magnetic Excitation
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 Magnet: 1.4 T
 Distance C1-C2: 8 mm

Frequency (Hz)



Conclusions 

 Contactless excitation of miniaturized resonators by means of magnetic
fields has been proved

 The effects of the downscaling of the dimensions of the resonators on theg
excitation principle have been analyzed

 Dedicated solutions have been studied and applied to the design of
MEMS microresonators

 Contactless excitation of MEMS microresonators by means of magnetic
fields has been proved

 The principle can be adopted to excite contactless sensors operating on The principle can be adopted to excite contactless sensors operating on
short-range excitation distance of the order of 1 cm

 The experimental activity is investigating the possibility of extending the
principle to vibration readoutprinciple to vibration readout

 Contactless excitation and detection of vibrations in conductive
microstructures can be in general applied to measure a large variety of
physical quantities which can cause a predictable shift in the resonant
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physical quantities which can cause a predictable shift in the resonant
frequency of the structure




