

Simulation and of Visualisation Wire-Arc Additive Manufacture

Ioannis Bitharas Jialuo Ding Andrew Moore Stuart Williams COMSOL CONFERENCE 2017 ROTTERDAM

HERIOT WATT UNIVERSITY

Overview

Background previous work, WAAM process

MHD flow modelling Plasma arc welding torch model

Schlieren imaging Validation through optical diagnostics

Ongoing work Trail shield, torch optimisation Pressure validation

I. Bitharas *et al.*, **Visualisation and optimisation of shielding gas** coverage during GMAW, *Journal of Materials Processing Technology*

P. Bidare, I. Bitharas *et al.*, **Fluid and particle dynamics in LPBF**, *Acta Materialia 14*2 (2018)

Wire – Arc Additive Manufacture (WAAM)

HiVE Chamber @ Cranfield University: gantry-based motion

Ar supply (up to 195 lt/min) Plasma arc welding torch Printed part Ti-6AI-4V Trailling shield

PAW torch simulation layout

Plasma arc welding: Magneto-hydrodynamics

Simulating MHD flow with COMSOL

$$\rho(\mathbf{u} \cdot \nabla \mathbf{u}) = \nabla \cdot [-p + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T})] + \mathbf{F}$$

$$\nabla \cdot (\rho \mathbf{u}) = 0$$

$$\nabla \cdot (\rho \mathbf{u}) = 0$$

$$\nabla \cdot (\rho \mathbf{u}) = 0$$

$$\nabla \cdot (k \nabla T) + \rho c_{p}(\mathbf{u} \cdot \nabla T) = \mathbf{J} \cdot \mathbf{E} + \frac{5k_{b}}{2e} \mathbf{J} \cdot \nabla T - 4\pi \varepsilon_{N}$$

$$\nabla \times \left(\frac{1}{\mu_{0}} \nabla \times \mathbf{A}\right) + \sigma \nabla V = 0$$

$$Heat transfer$$

$$(Solids \& Fluids)$$

$$\nabla \cdot \sigma \nabla V = 0$$

$$-\nabla \cdot \left(\rho D_{i}^{o} \nabla \omega_{i} + \rho \omega_{i} D_{i}^{o} \frac{\nabla M_{n}}{M_{n}} + D_{i}^{T} \frac{\nabla T}{T}\right) + \rho(\mathbf{u} \cdot \nabla) \omega_{i} = 0$$

$$Transport of concentrated species (Ar \& air)$$

Plasma jet – shield gas stream interaction

Temperature field partly constricted by nozzle Arc pinches shield gas flow Convective recirculation

Steady-state air entrainment

Lorentz force ($F_L = J \times B$) high near electrodes Stronger pull but similar air levels with higher current ~4k ppm air transported near melt pool (!)

Mass fraction (1)

Deposited wall geometry: Temperature

Side jet inclination changes with wall width Heat transfer to wall influenced by convective action Also relevant to torch positioning during builds

Heat transfer to wall

Wall geometry – O₂ concentration

Inert environment changes with wall geometry

Schlieren imaging

Light collimated between M1 & M2 Flow information = Refracted rays Cut-off highlights $\frac{\partial n}{\partial x} \propto \frac{\partial \rho}{\partial x}$ Band pass filter at 633 ± 10 nm

PAW torch – schlieren video

Ongoing work

Pressure measurements to further validate model

Momentum transfer in arc critical in understanding interaction with melt pool

No steady-state level set!

Results summary

- MHD flow features validated from schlieren
- Schlieren interpretation facilitated by simulation
- Allows optimisation of WAAM process
- Torch Shielding Manufactured part

HiVE local shielding system

MHD modelling: Turbulent jets

Comparison with simulation, including k-ε turbulence model

K. Cheng, X. Chen, **Prediction of the entrainment of ambient air into a turbulent argon plasma jet using a turbulence-enhanced combined-diffusion-coefficient method**, Int. J. Heat Mass Transf., 2004

- Thomson scattering
- Laser-induced
 fluorescence

J. R. Fincke, R.L. Williamson, et al. Entrainment in high-velocity, high-temperature plasma jets. Parts I & II , Int. J. Heat Mass Transf., 2003

TIG torch in WAAM wall

- Step towards more representative plasma torch model
- MHD physics identical with PAW, steady-state flow patterns similar
- 2D axisymmetric geometry: ~15 mins solution time per case

Temperature plot

Velocity plot

Air contamination

Increased accuracy in boundary layer due to wall functions (SST turbulence model)

Parametric sweeps

- Stagnation pressure increases non-linearly with arc current
- Air entrainment doubled for 200 A compared to 100 A
- Theoretical analyses to complement future measurements

Turbulence intensity

- As current increases, the side jets contract but also push out and downwards with more momentum
- Overall greater turbulence levels
- Relatively higher air content on top of solidifying metal expected

Rv: torch + *trail shield/PAW_trail_shield_7*

The high wall problem

- As the physical constraint of the substrate is no longer there, the inner area becomes more exposed
- The outer vortex stretches to the extent that it loses effectiveness
- Air contamination increases proportionally to standoff <u>from substrate</u>

Rv: torch + trail shield/PAW_trail_shield_9

Background: MIG welding process optimisation

Observed flow features predicted by simulation

Qualitative validation through schlieren

5

10

15

20

25 ▼ -6.04×10⁴

Arc welding simulations

Radiographic cross-examination

6 l/min

9 l/min

Representative films & bead on plate welds

Film

