COMSOL CONFERENCE 2017 ROTTERDAM

UNIVERSITÀ DI PISA

Frequency response analysis of soil-structure interaction for concrete gravity dams

Anna De Falco¹, Matteo Mori² and Giacomo Sevieri³ ¹Dept. of Energy, Systems, Territory and Construction Engineering, Pisa Univ. (Italy), ²Dept. of Civil and Industrial Engineering, Pisa Univ. (Italy), ³Dept. of Civil and Environmental Engineering, Florence Univ. (Italy).

Seismic assessment of gravity dams

- Italy has over 500 large concrete dams
- Complex phenomenon
 - Fluid coupling
 - Wave mechanics
 - Nonlinear material behaviour
- Specific ncessities:
 - Assessment of code requirements compliance
 - Performing or relatively fast analyses on many structures
 - Reasonable accuracy within uncertainty ranges

Seismic waves

• Actual earthquake condition:

Soil structure interaction - SSI

- Effects of soil deformation on structural response:
 - Seismic SSI: [Clough & Penzien]:
 - **Kinematic interaction**: Influence of structure **stiffness** on earthquake excitation
 - Inertial interaction: Influence of structure mass on earthquake excitation
- Consequences:
 - Lengthening of natural periods due to the added foundation flexibility
 - Radiation damping: Additional dissipation of energy via wave reflection in the unbounded half-space.

System modeling

Traditional method:

Massless terrain [Wilson]:

- Null terrain density
- Body load on the structure
- Fixed constraint at the bottom of bounded soil

Proposed method:

Full analysis:

- Real terrain density
- No load on the structure
- Unbounded half space terrain with incoming wavefront

COMSOL implementation

Modeling strategy:

- Frequency domain analysis linear system behaviour
- Solid mechanics interface & Acoustics interface
- Use of Perfectly Matched Layers (PML)

Boundary conditions

Results: Base shear

Massless model:

- Peak frequency shift
- Amplified peak value
- Spurious second large peak

Unbounded model:

- Peak frequency shift
- Reduced peak value
- No spurious peaks

Results: Crest acceleration

Massless model:

- Peak frequency shift
- Incorrect peak value
- Spurious second large peak

Unbounded model:

- Peak frequency shift
- Reduced peak value
- No spurious peaks

Stress and energy

Parametric study

• Variation of results with four parameters:

- Concrete density ho_c
- Concrete stiffness E_c
- Rock density ho_g
- Rock stiffness E_g

Parametric study – empty reservoir

Parametric study - empty reservoir

Rock properties:

- Stiffness
- Density

Concrete properties:

- Stiffness
- Density

Parametric study – full resevoir

Equivalent radiation damping

Half-power banwidth method, damping ratio:

$$\eta = \frac{f_2 - f_1}{f_p} \cong 2\xi$$

Simplified equivalent model

Match the complete model with «ordinary» boundary conditions:

•	Spring	
Spri	ng type: pring constant per unit area	Spring – Dashpot base: COMSOL Functionality - Thin Elastic layer: k_1, k_2, c_1, c_2

Simplified equivalent model

Parameter	[N/sqm]	[N·s/sqm]	:
k1	8.6e+9 ± 1.1e+9		
k ₂	9.7e+8 ± 9.3e+7		
C1		3.6e+7 ± 2.3e+6	k1 ـ دا
C ₂		1.5e+7 ± 6.8e+6	k2 c2

LiveLink functionality For MATLAB:

Conclusions

Comparison of different models:

- Effects of half-space modeling
- Radiation damping phenomenon quantification
- Evaluation of equivalent systems to be implemented in advanced analyses including nonlinearity
- Definition of equivalent damping to adopted in code-defined response spectra

Further developments:

- Extension to 3D
- Implementation of nonlinear material models
- Accelerogram deconvolution

