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Abstract: Viscous fingering (VF), a 
hydrodynamic instability, is often observed in 
porous media when a less mobile fluid is 
displaced by a more mobile fluid. Depending on 
the porosity of the medium this can be classified 
into two classes: Darcian and non-Darcian. The 
fluid flow in the former is described by the 
Darcy’s law, whereas in the later different 
momentum equations are required. Here, we 
present COMSOL simulations for miscible VF in 
homogeneous porous media of both types. We 
use Brinkman equation for modeling in the 
porous media, wherever Darcy’s law is not 
applicable. For the modeling purpose, two 
different physics (hydrodynamics and transport 
of solute in porous media) are coupled. The 
Darcy’s law results are in good match with the 
linear stability as well as nonlinear simulations 
existing in the literature. Simulation results of 
the COMSOL multiphysics reveal the 
similarities and differences between the Darcy’s 
law and Brinkman equation. 

Keywords: Viscous fingering, Rectilinear flow, 
Porous media, Porosity. 

1. Introduction

Miscible displacement has particular
importance in oil recovery [1], contaminant 
transport in aquifers and chromatography 
separation [2] and various other environmental 
and industrial processes [1]. Displacement of a 
more viscous fluid by a less viscous one in 
porous media or in Hele-shaw cell features a 
hydrodynamic instability, known as viscous 
fingering (VF), which can be observed both in 
miscible and immiscible fluids [1]. For a given 
pressure gradient, the perturbations at the 
interface grow due to different mobility of the 
two fluids. For conservation of momentum in 
porous media, generally Darcy’s law is used, and 
hence these porous media are termed as the 
Darcian media. Darcy's law has some limitations; 
large fluid velocity [3], viscous shear effect [3, 

4] in porous media can not be described by
Darcy’s law. Non-Darcian porous media are
those in which Darcy’s law is not applicable.
Various authors have given different model for
fluid flow in non-Darcian porous media.  For
porous media having typical porosity
approximately greater than 0.7, Brinkman
equation describes the momentum conservation
that incorporates viscous shear effect [3, 4, 5].
To incorporate the effect of nonlinearity of the
fluid velocity in porous media, Forchheimer law
[6] has been successfully used in the literature.
Different COMSOL models for miscible VF are
available based on the Darcy’s law: Holzbecher
presented an equation-based model by coupling
Poisson and convection-diffusion equations [7],
Pramanik et al. [2] used the “Two-Phase Darcy’s
Law” model of fluid flow module. However,
both these models restricted to the VF
instabilities only in Darcian porous media. Our
aim is to design a model which could be able to
capture instabilities in Darcian as well as non-
Darcian porous media. Our model validates the
earlier classical results of VF [1] and also
successfully captures the results obtained by
Pramanik et al. [2]. Similarities and differences
of the instabilities obtained from the Brinkman
equation and Darcy’s law are discussed.

2. Mathematical modeling

A fluid of viscosity µ1, injected at a uniform
velocity U, displaces another fluid of viscosity µ2 

(> µ1) in two-dimensional homogeneous porous 
media having constant permeability κ and 
constant porosity εp [see figure 1]. Also assume 
that solute dispersion in the porous medium is 
isotropic in nature. Fluids are considered to be 
miscible, incompressible, neutrally buoyant and 
having the same density ρ. Concentration of a 
solute in the solvent is denoted by c. Without 
loss of generality, c = 0 mol/m3 for fluid of 
viscosity µ1 and c = c2 mol/m3 for fluid of 
viscosity µ2. As the fluids are assumed miscible 
in nature, so a thin transition zone between the 
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fluids immediately created and we assume it has 
thickness δ at the beginning of our simulations, 
as shown in figure 1. Assume, domain of our 
problem is Lx x Ly and x0 is the interface position 
at which concentration is c = c2/2 mol/m3. 

Figure 1: Schematic diagram of displacement of 
miscible fluid in 2D porous media. The dashed line 
shows the unperturbed fluid-fluid interface at initial 

time. 

In the present study, the pressure gradient is 
the only driving force that generates the fluid 
flow. The complete governing system of 
equations are the equation of continuity 
[conservation of mass], the equation of motion 
for fluid velocity [conservation of momentum], 
and the convection-diffusion equation [transport 
of solute concentration]. The above-mentioned 
physical problem consists of two physics: (a) 
hydrodynamics, that describes the fluid motion 
in porous media [Darcian as well as non-Darcian 
porous medium]; (b) transport of solute in the 
porous media. Mathematical descriptions of the 
individual physics are described below. First, we 
describe the hydrodynamic part, followed by the 
transport of solute. 

2.1 Flow in Darcian porous media 

Fluid motion in a porous media with lower 
porosity, called the Darcian porous media, is 
described in terms of the Darcy’s law [3, 8],  

 ∇⋅u = 0                                                       (1) 

∇p = −µ(c)
κ

u   (2) 

where u = (u, v), p, µ are the two-dimensional 
Darcy (seepage) velocity vector, hydrodynamic 
pressure, and the dynamics viscosity of the fluid, 
respectively. We assume that the dynamic 
viscosity of the fluid depends on a solute 
concentration, which is described in section 2.3 
below. The boundary conditions associate with 
eqs. (1) and (2) are as follows, 

 u = (U, 0)  at x = 0                                     (3) 

p = 0  at x = Lx    (4) 

∂u
∂x

= 0, v = 0 at y = 0  and y = Ly  (5) 

2.2 Flow in non-Darcian porous medium 

To describe the flow in non-Darcian porous 
media, various authors used a different 
governing equation, in place of the Darcy’s law, 
for conservation of momentum [3, 4, 5, 6]. 
Brinkman equation is an extension of Darcy's 
law [3] which is given by 
  ∇⋅u = 0                                                        (6) 

ucucp
p

2)()(
∇+−=∇

ε
µ

κ
µ

  (7) 

Similar to the case of Darcy’s law, here also, the 
dynamic viscosity of the fluid depends on a 
solute concentration described in section 2.3 
below. In this case, the no-slip boundary 
conditions in addition to the other boundary 
conditions described in eqs. (3)-(5) are required 
to describe the fluid motion. 

2.3 Transport of solute in porous media 

 Transport of the solute that controls the 
dynamic viscosity of the fluids is described by a 
convection-diffusion equation, 

 εp
∂c
∂t
+u ⋅∇c = εpD∇

2c  (8) 

where D is the duffsion coeffcient. The boundary 
conditions associated with this equation are, 
   c = 0 at               (9) 
∂c
∂x

= 0 at     (10) 

∂c
∂y

= 0 at and   (11) 

Since, a transition region is of thickness δ exist 
between the two fluids. Hence, the initial 
condition for concentration [9] is given by 

c(x, y, t = 0) = c2
2
1+ erf x − x0

δ
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where erf stands for the error function, 

erf x( ) = e
−
z2

2

0

x

∫ dz (13) 

Since, an initial approximation for the fluid 
velocity is required to solve the convection-
diffusion equation, we presribe  

x = 0

x = Lx

y = 0 y = Ly
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    u(x, y, 0) = (U, 0)                                    (14) 
We assume an Arrheniuus type relation between 
viscosity and concentration [1],  which is given 
by 
   µ(c) = µ1e

Rc/cref   (15) 
where cref is the reference concentration and we 
can assume it, to be equal to c2 and R is the log-
mobility ratio and given by  

R = ln µ2
µ1

!

"
#

$

%
&     (16) 

Since µ2  > µ1, so R > 0 in our problem. 

3. Use of COMSOL Multiphysics®

We use two different physics interfaces of
COMSOL Multiphysics® to model miscible 
displacement in porous media. Hydrodynamic 
part is modeled using Darcy’s law (dl) for fluid 
flow in Darcian porous media, while Brinkman 
equation (br) is used for the non-Darcian porous 
media. Transport of diluted species in porous 
media (tds) of COMSOL multiphysics 5.2 is 
used to model the transport of solute 
concentration. These three COMSOL interfaces 
are described below. For our simulations, we 
assume glycerol as the solute and water as the 
solvent. Also, we consider displacing fluid is 
pure water. The concentration of displaced fluid 
(c2) is calculated from the concentrative 
properties of aqueous solution [10]. Parameters 
used in our simulations are given in Table 1.  

Table 1: Lists of parameters 

Parameter Symbol Value and 
unit 

Length of domain      Lx 0.08 m 

Width of domain      Ly 0.02 m 

Log-mobility ratio      R 1, 2, 3 

Injection Speed     U 1 mm/s 

Viscosity of the 
displacing fluid 

    𝜇! 1 mPa-s 

Density of both 
the fluids 

    ρ 1000 kg/m3

Porosity     εp 0.1, 0.5, 0.8 

Permeability  κ 10-6 m2

Diffusion 
coefficient 

    D 4×10-8 m2/s 

Interface position     𝑥! 0.01 m 

Thickness of the 
transition zone

    δ 10-4 m

3.1 Darcy’s law 

      The equations used in Darcy’s law (dl) model 
are: 
∂
∂t
(εpρ)+∇⋅ (ρu) =Qm (17a) 

u = − κ
µ(c)

∇p      (17b) 

For constant porosity of the medium, constant 
density of the fluid, and zero mass source (Qm = 
0), the equation of continuity, eq. (17a) reduces 
to the eq. (1). The inlet and outlet boundary 
condition specifies normal inflow velocity, U 
and pressure, 𝑝 = 0, respectively. No flow 
boundary conditions are specified at the 
transverse boundaries. Extra fine free triangular 
mesh of fluid dynamics is used for discretization 
of the domain. This meshing provides 
perturbation of triangular type at the interface. 

3.2 Brinkman equation 

       The momentum conservation equations in 
brinkman (br) model are,  

∇⋅ −pI +µ(c) 1
εp
(∇u+ (∇u)T )

$
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//u+F = 0

      (18a) 

ρ∇⋅u =Qbr (18b) 
where I is identity vector and βF is forchheimer 
drag coefficient. For zero mass source (Qbr = 0) 
the equation of continuity, eq. (18b) reduces to 
eq. (6). The same assumption along with zero 
volume force (F = 0) in the absence of 
forchheimer drag (βF = 0), and constant porosity 
reduce eq. (18a) to eq. (7). Similar to the case of 
Darcy’s law, the inlet and outlet boundary 
condition specifies normal inflow velocity, U, 
and pressure, 𝑝 = 0, respectively. Here, no slip 
boundary conditions are specified at the 
transverse boundaries. We use finer free 
triangular mesh of fluid dynamics for the domain 
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discretization, which provides triangular type 
perturbation at the interface [see figure 2]. In the 
Brinkman model, the boundary layer effect are 
important. Hence, we also use “boundary layer” 
discretization of finer size near the transverse 
boundaries [as shown in figure 2]. 

Figure 2: Discretization of domain of finer size in 
Brinkman model. 

3.3 Transport of dilute species in porous 
media 

        Transport of diluted species in porous 
media (tds) model is used for the transport of 
solute in porous media for both the Darcy’s law 
and Brinkman model, since the solute transport 
is implicitly related to the nature of the porous 
media via the fluid flow equations in porous 
media. The equations used in ‘tds’ model are: 

P1,i
∂ci
∂t

+P2,i +∇⋅Γ i+u ⋅∇ci = Ri + Si   (19a)

P1,i = εp (19b) 

(19c) 

(19d) 

 (19e) 

where ci, Γi, Ri, Si, De,i, DF,i and 𝜏!,! are the 
concentration, diffusive flux, reaction rate, 
source, effective diffusion, molecular diffusion 
and tortuosity of the i-th species [i = 1, 2], 
respectively. We use tortuosity model which 
gives, 𝜏!,! = 1. Now for constant porosity and 
constant diffusion, 𝑃!,! = 0 and ∇ ⋅ Γ! = ∇ ⋅
−𝜀!𝐷!,!∇𝑐! = −𝜀!𝐷!,!∇!𝑐!. Thus, the system 

of eqs. (19a)–(19e) reduce to the convection-
diffusion eq. (8) for constant porosity, constant 
diffusion, Ri = 0, Si = 0 and 𝜏!,! = 1. The inlet 
boundary condition specifies species 
concentration, c = 0 and outlet boundary 
condition is corresponds to free flow. No flux 
boundary conditions are specified at the 

transverse boundaries. Initial condition for 
concentration is prescribed by eq. (12). The 
transport of dilute species coupled with the 
Darcy’s law model miscible viscous fingering in 
Darcian porous media, while the former with the 
Brinkman equation model miscible viscous 
fingering in non-Darcian porous media. 

4. Results and discussion

Here we discuss the viscous fingering
instability in porous media for three different 
porosity values, εp = 0.1, 0.5, and 0.8. The 
diffusion coefficient D used in all our 
simulations is 4x10-8 m2/s. 

4.1 Darcy’s Law 

       Figure 3 shows the spatio-temporal 
evolution of the species concentration for R = 2, 
U = 1 mm/s. This figure depicts finger formation 
at the miscible interface. As time increases, 
coarsening of fingers, and hence the reduction in 
number of fingers are observed.  Shielding of 
adjacent finger reduces the supply of less viscous 
fluid and results fading of advanced fingers.  

Figure 3: Spatio-temporal evolution of the species 
concentration at time t = 0, 5 and 10 seconds [from 

top to bottom] for R = 2 and U = 1 mm/s. 

It is observed that the instability increases with R 
[see Figure 4]. Figure 5 depicts the splitting of 
fingers for R = 3. This figure depicts that the tip 
of the finger widen before it splits into two 
fingers. These summarize that our present 

P2,i = ci
∂εp
∂t

Ni = Γ i+uci = −De,i∇ci +uci

De,i =
εp
τ F,i

DF,i
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COMSOL model successfully capture miscible 
VF in homogeneous porous media along with 
various nonlinear aspects of miscible VF [1].  

Figure 4: Spatio-temporal evolution of the species 
concentration at time t = 5 seconds for R = 1 [top], 3 

[bottom], U = 1 mm/s. 

Figure 5: Spatio-temporal evolution of the species 
concentration at time t = 5 seconds [top], 6 seconds 

[bottom] for R = 3, U = 1 mm/s. 

Figure 6: Spatio-temporal evolution of the species 
concentration for εp = 0.1 at t = 2 seconds [top] and εp 
= 0.5 at t = 10 seconds [bottom], where R = 2, U = 1 

mm/s. 

Next, we discuss the effect of porosity on the 
observed VF patterns. Figure 6 depicts that the 
fingering dynamics are different for εp = 0.1 and 
εp = 0.5 at time t = 2 and 10 seconds, 
respectively. In both the cases, characteristics 
time ‘t/εp’ is same. But in the later case, 
spreading of advanced fingers is less and also 
reduction in number of fingers are observed. 
This is due to more stabilizing effect of diffusion 
[11] in the latter case.

4.2 Brinkman equation 

For εp = 0.8, i.e. for the Brinkman equation, 
the fingering dynamics are significantly different 
from that with Darcy’s law. Figure 7 shows the 
snapshots of the species concentration at 
different times for R = 3, U = 1 mm/s. 
Comparing this figure with figure 5 
[corresponding to the Darcy’s law], we observe 
that the fingering instability is prominent with 
the Darcy’s law compared to the Brinkman 
model. In the later case, boundary layer 
formation is observed, which is absent in 
Darcy’s law model. Also, we observe that the 
instability sets in very late in the later case 
compared to the former.  The wavelength of the 
unstable modes is large by a factor of 4 in the 
Brinkman model in comparison to the Darcy’s 
law. We further observe that for R = 1 no 
fingering is observed. Here, also it is observed 
that the instability increases with R same as 
Darcy’s law [see Figure 8]. 

Figure 7: Spatio-temporal evolution of the species 
concentration at time t = 10, 20, 30 seconds [from top 

to bottom] where R = 3, εp = 0.8, U = 1 mm/s. 
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Figure 8: Spatio-temporal evolution of the species 
concentration for R =1 [top], 3 [bottom] at t = 30 

seconds, where εp = 0.8, U = 1 mm/s.  

Near the transverse boundaries, similar 
fingering patterns are observed for given set of 
parameters in Darcian as well as non-Darcian 
porous media. This is due to similar perturbation 
near the transverse boundaries. In our model, 
perturbations at the interface are inserted by 
triangular mesh only. Finite element simulations 
of our problem are sensitive to the type and 
refinement of the mesh used. When mapped 
meshing is used for discretization of the domain, 
only diffusion at the interface is observed. Since 
mapped mesh is structured meshing, there is no 
perturbation at the interface. Nevertheless, 
fingering instability is observed by modifying 
the initial condition for the COMSOL 
simulations when we introduce a random 
perturbation at the interface by adding a solid 
line for ensuring nodes at this interface. 

5. Conclusions

We present a new numerical model of
COMSOL Multiphysics by coupling of two 
different physics to capture miscible viscous 
fingering in two-dimensional homogeneous 
porous media with small as well as large 
porosity. We successfully capture the 
nonlinearities of miscible VF, such as shielding, 
spreading, and splitting, with the help of Darcy’s 
law. This is in accordance with the results of the 
existing literature [1]. The effects of various flow 
parameters on the observed viscous fingering are 
discussed. For porous media with large porosity 
Brinkman equation shows different instability 
dynamics both qualitative and quantitatively. 
Modeling miscible viscous fingering in porous 

media with inertia effects is the focus of our 
ongoing research.  
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