A Novel Wavelength Detection Method Based on Wavelength Absorption in Silicon K. Zhang¹, Y. Audet¹ 1. École Polytechnique de Montréal, Montréal, QC, Canada

Introduction: A new filter-less method of detecting the spectrum based on wavelength absorption in silicon is proposed. Wavelength dependent absorption coefficient produces a unique excess carrier distribution [1]. Thus the wavelength spectral information can be obtained by measuring the photon generated electron-hole pairs as a function of depth.

Results: Each wavelength has unique excess carrier distribution at the same incident power. An external magnetic field increases the measured current and improves the detection sensitivity. The measured current comes from a

Figure 1. The schematic figure of the detection principle

Theoretical Calculations: We use the steady-state continuity equation to describe

certain depth around 0.9um.

Figure 4. Excess hole concentration Vs depth with magnetic field

the carrier behavior under the constant incident illumination [2].

$$D_{p} \frac{d^{2} \delta_{p}(|y|)}{dy^{2}} - \frac{\delta_{p}(|y|)}{\tau_{p}} + g_{p} = 0$$

Figure 6. Middle P+ electrode current

In order to collect the excess holes, we create an electric field and apply an external magnetic field to control hole transportation [3]. $J_{p}(\mathbf{B}) = J_{p}(\mathbf{0}) - \mu_{p}^{*}(J_{p}(\mathbf{B}) \times \mathbf{B})$

×10⁻⁶

2.5

Jp (D) — Jp (O) μp (D) / D) 3: lambda0=7E-7, alpha=2E5 Surface: Log of hole concentration (1) 18

Conclusions: A COMSOL model and MATLAB calculations validate the detection principle. More modeling results need to be compared to experiments before concluding on the performance of this novel highly integrated spectrometer device.

References:

- 1. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed. New York: John Wiley & Sons, 1998.
- 2. S. K. B. B. J. Streetman, *Solid State Electronic Devices*, 6th ed. Pearson Prentice Hall, 2006
- 3. H. P. Baltes and R. S. Popovic, "Integrated semiconductor magnetic field sensors," *Proc. IEEE*, vol. 74, no. 8, pp. 1107–1132, 1986.

Figure 2. COMSOL model of the proposed wavelength detector figure

Excerpt from the Proceedings of the 2016 COMSOL Conference in Boston