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Abstract

This work examined in detail the a priori prediction of the axial dispersion coefficient from
available correlations versus obtaining it and also mass transfer information from
experimental breakthrough data and the consequences that may arise when doing so
based on using a 1-D axially dispersed plug flow model in the COMSOL Multiphysics®
software and its associated Danckwerts outlet boundary condition. These consequences
mainly included determining the potential for erroneous extraction of the axial dispersion
coefficient and/or the LDF mass transfer coefficient from experimental data, especially
when non-plug flow conditions prevailed in the bed. Two adsorbent/adsorbate cases were
considered, i.e., CO2 and H2O vapor in zeolite 5A, because they both experimentally
exhibited significant non-plug flow behavior, and the H2O-zeolite 5A system exhibited
unusual concentration front sharpening that destroyed the expected constant pattern
behavior (CPB) when modeled with the 1-D axially dispersed plug flow model. 

Overall, this work showed that it was possible to extract accurate mass transfer and
dispersion information from experimental breakthrough curves using a 1-D axial
dispersed plug flow model when they were measured both inside and outside the bed. To
ensure the extracted information was accurate, the inside the bed breakthrough curves
and their derivatives from the model were plotted to confirm whether or not the
adsorbate/adsorbent system was exhibiting CPB or any concentration front sharpening
near the bed exit. Even when concentration front sharpening was occurring with the H2O-
zeolite 5A system, it was still possible to use the experimental inside and outside the bed
breakthrough curves to extract fundamental mass transfer and dispersion information
from the 1-D axial dispersed plug flow model based on the systematic methodology
developed in this work.
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Figures used in the abstract

Figure 1: Breakthrough curve simulation with variations in axial dispersion coefficient
compared with centerline and exit concentrations.



Figure 2: CO2 on zeolite 5A: Fit of the 1-D axial dispersed plug flow model to the outside
bed (triangles) experimental breakthrough curve using a value of DL 7 times greater than
that from the Wakao and Funazkri correlation (left) and the fitted LDF kn = 0.0023 s-1.

Figure 3: H2O vapor on zeolite 5A: Predictions from the 1-D axial dispersed plug flow
model of the outside bed (triangles) experimental breakthrough curve when varying the
value of DL. DL = 10 (dotted lines), 30 (dashed lines), 50 (solid lines) and 70 (dash-dot lines)
times greater than Wakao and Funazkri correlation.

Figure 4: H2O vapor on zeolite 5A: Predictions from the model (lines) of the gas phase
concentration breakthrough curves at 0, 4, 8, 12, … 92, 96 and 100% locations in the bed.
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