COMSOL CONFERENCE 2016 MUNICH

Bloch Waves in an Infinite Periodically Perforated Sheet

Waldemar Maysenhölder

Department of Acoustics

Fraunhofer Institute for Building Physics, Stuttgart, Germany

Background

Building Acoustics: Masonry Walls

Theoretical modelling (1988ff.):

infinite 2D-periodic structures analytical approach structure-borne sound propagation transmission loss

Focus on

low frequencies

homogenization

structure-borne energy and intensity

Background

Back then: Fractal structures in vogue

2D periodic structure with **Sierpinski Carpet** unit cell:

Back then:complicated analytical calculationsnumerical evaluation of large linear systems of equations

Today: COMSOL

Outline

1 COMSOL Model Setup

2 COMSOL Results

- 2.1 Band Structure
- 2.2 Bloch Waves (standing or running)
- 2.3 Energy Densities and Intensity

3 Analytical Results

- 3.1 Two Theorems
- 3.2 Low-Frequency Approximation
- 3.3 Exact Homogenization: Equivalent Anisotropic Medium

4 Applications

1 COMSOL Model Setup

COMSOL Blog

'Modeling Phononic Band Gap Materials and Structures'

Nagi Elabbasi | February 10, 2016

Essential feature

Floquet Periodicity in 2D

(orthogonal Bravais lattices only – so far)

Specify Bloch wave vector

 \rightarrow Solve eigenvalue problem

→ Parameter study

→ Generate band structure

 \rightarrow Analyze Bloch waves

2.0 Input Parameters

L _{uc} = 3 cm	unit cell size
$L_{hole} = L_{uc}/3$	hole size

E = 10 MPaelastic materialv = 1/6 $\rho = 1500 \text{ kg m}^{-3}$

Unit Cell

2.1 Band structure for Bloch wave vectors along x-direction (0°)

2.2 Bloch wave (0°): blue branch \approx transversal

2.2 Bloch wave (0°): green branch \approx longitudinal

2.2 Bloch wave (0°): red branch

2.2 Bloch wave (0°): light blue branch

p = 0.35 , $~~\lambda_{Bloch} \approx$ 2.9 L_{uc} , ~~ 1579 Hz

0.5

2.2 Standing Bloch wave (0°): blue branch

0.5

2.2 Standing Bloch wave (0°): red ? green! branch

2.2 Bloch wave (45°)

2.2 Bloch wave (0°): light blue branch

2.3 Energy Densities (time average: log10(solid.Wk+solid.Wh)) Bloch wave (0°): light blue branch

p = 0.1, $\lambda_{Bloch} = 10 L_{uc}$, 1619 Hz

2.3 Intensity

3.1 Two theorems for Bloch waves in periodic media

Rayleigh's principle

$$\langle \langle \boldsymbol{e}_{\mathrm{kin}} \rangle \rangle = \langle \langle \boldsymbol{e}_{\mathrm{pot}} \rangle \rangle$$

Equivalence of group velocity and energy velocity

$$abla_{\vec{k}_{\text{Bloch}}} \omega \equiv \vec{C} = \frac{\left\langle \left\langle \vec{S} \right\rangle \right\rangle}{\left\langle \left\langle e_{\text{tot}} \right\rangle \right\rangle} \equiv \frac{\left\langle \vec{I} \right\rangle}{\left\langle w_{\text{tot}} \right\rangle}$$

W. Maysenhölder, Acustica 78 (1993) 246-249

3.2 Low-frequency Approximation

blue branch \approx transversal

local violation of Rayleigh's principle !

green branch \approx longitudinal

W. Maysenhölder: Körperschallenergie. Hirzel, Stuttgart, 1994

3.2 Low-frequency Approximation

average intensity direction *≠* propagation direction

W. Maysenhölder: Körperschallenergie. Hirzel, Stuttgart, 1994

3.2 Low-frequency Approximation

blue branch \approx transversal

3.3 Exact Homogenization: Equivalent Anisotropic Medium

Anisotropic elastic moduli from phase velocities of Bloch waves at low frequencies

Slowness diagram

Polarization

Intensity

A. N. Norris: Q. J. Mech. Appl. Math. 42 (1989) 413-426 W. Maysenhölder: Körperschallenergie. Hirzel, Stuttgart, 1994

4 Applications

- Periodic metamaterials
 - band structure (gap) optimization

Floors of sports halls

Sound transmission loss !

Conclusion

COMSOL: useful, convenient, powerful tool for academic and practical problems

Suggestion: Implementation of

non-orthogonal Bravais lattices

"Circle Surface" graphics

Conclusion

COMSOL: useful, convenient, powerful tool for academic and practical problems

Suggestion: Implementation of

non-orthogonal Bravais lattices

"Circle Surface" graphics

Many thanks to COMSOL Support !

Linus Andersson, Gilles Pigasse, Dennis Cronbach,

Rune Westin, Maria Iuga-Römer, Hinrich Arnoldt

et al.

Appendix

Lagrange Density (time average $\langle L angle_T$: solid.Wk - solid.Wh)

Appendix

Reactive Intensity \vec{Q} (imag(solid.lcomplexX, imag(solid.lcomplexY)

 $\nabla \cdot \vec{Q} =$

$$2\boldsymbol{\omega}\left(\left\langle \boldsymbol{e}_{\mathrm{kin}}\right\rangle_{T}-\left\langle \boldsymbol{e}_{\mathrm{pot}}\right\rangle_{T}\right)$$

$$= 2\omega \langle L \rangle_T$$

p = 0.1 , λ_{Bloch} = 10 L_{uc} , ~~ 1619 Hz

Due to symmetry the reactive intensity does not leave the unit cell !

Close-up of Vortices

