Research for Sustainable Technologies

Stiftung bürgerlichen Rechts

J.-F. Drillet

DMFC Model with COMSOL

Comsol conference, Munich, 12.10.2016

Materials Chemical Engineering Biotechnology

Commercial available DMFC for off-grid applications : The Company, owner of the

applications : The Company, owner of the globally established EFOY COMFORT and EFOY Pro fuel cell generator brands, has sold over **35,000** of its systems into a large number of industrial, defense and consumer applications: <u>http://www.sfc.com/en/markets/overview</u>

EFOY Pro 12000 Duo (SFC AG, Brunnthal) 24 V / 20,8 A

48 V /10.4 A Max. nominal power **500 W** 640 x 441 x 310 mm = **87,5 I** Weight: **33 kg**

Main challenges to overcome:

- Increase of both power density and methanol yield!

- Limitation of methanol cross-over

through PEM membrane

- reduce Catalyst loading

Principle of Direct Methanol Fuel Cell

> Optimal case: C_{MeOH} at RL_a /membrane interface = 0

Domains and physics

Assumptions: - no transport of molecular O₂ through Nafion membrane
- no methanol transport from RL cathode to channel cathode

Electronic/Ionic charge balance	Ohm's law	$I = \sigma \Delta \cdot V$	$\begin{array}{l} A_o = anodic \ Tafel \ slope \ (V \ decade^{-1}) \\ c = concentration \ (mol \ m^{-3}) \\ D = diffusion \ coefficient \ (m^2 \ s^{-1}) \\ F = Faraday \ constant \ (C \ mol^{-1}) \\ i_a = anodic \ current \ density \ (A \ m^{-2}) \\ i_0 = exchange \ current \ density \ (A \ m^{-2}) \\ I = current \ (A) \\ N_i = charge \ transport \ in \ electrolyte \ (mol \ m^{-2} \ s^{-1}) \\ p = pressure \ (Pa) \\ u = velocity \ (m \ s^{-1}) \\ V = potential \ (V) \\ z = number \ of \ electron \ (-) \\ a = symetrie \ factor \ (-) \\ \eta = dynamic \ viscosity \ (Pa \cdot s) \\ \eta_a = anodic \ overpotential \ (V) \\ \varepsilon_p = porosity \ (-) \\ \kappa = permeability \ (m^2) \\ \Phi = potential \ in \ electrolyte \ (V) \\ \rho = density \ (kg \ m^{-3}) \\ \sigma = conductivity \ (S \ m^{-1}) \\ II = Tensor \end{array}$
Charge <u>transfer</u> <u>kinetics for</u> η <<	Butler-Volmer	$i_{a} = i_{0} * \left(\frac{c_{meoh}}{c_{meoh,ref}}\right) exp\left(\frac{\alpha_{a,a}}{R * T}F * \eta_{a}\right) \text{with } i_{0} = F k_{0} \underbrace{c_{ox}}_{ox} \stackrel{\alpha}{\sim} \underbrace{c_{red}}_{(1-\alpha)}$	
Charge <u>transfer</u> kinetics for η>>	Tafel	$i_{loc} = i_0 \ 10^{\eta/Aa}$, $i_{loc} = -i_0 \ 10^{\eta/Ac}$	
Concentration dependency of <u>i</u> e		i _o = i _{o_мога} *(<u>rfcs.c_wMeOH_a</u> /c _{меOH.ref})	
Charge transport in electrolyte	Nernst-Planck	$N_i = -D_i \nabla c_i - z_i u_i F c_i \nabla \Phi + c_i u$	
Coupled mass transport in free	Navier-Stokes	$\rho \frac{\partial u}{\partial t} + \nabla \cdot \left[-\eta (\nabla u + \nabla u^T) + pI \right] = -\rho (u \cdot \nabla) u$	
channel and porous electrode	Brinkman	$\frac{\rho}{\varepsilon_p} \frac{\partial u}{\partial t} + \nabla \cdot \left[-\eta \frac{\eta}{\varepsilon_p} (\nabla u + \nabla u^T) + pI \right] = -\frac{\eta}{k} u$	
Mass balances in gas phase in gas channels and porous electrodes	Fick	$-\nabla \cdot (-D \cdot \nabla c + c \cdot u) = 0$	
	Maxwell-Stefan	$-\nabla \cdot \left[-\rho \omega_i \sum_{j=1}^N D_{ij} \left\{ \frac{M}{M_j} \left(\nabla \omega_j + \omega_j \frac{\nabla M}{M} \right) + \left(x_j - \omega_j \frac{\nabla p}{p} \right) \right\} + \omega_i \rho u \right] = 0$	

Geometry

➤ WP8 + extrude opposite direction: H_ch + H_GDLc + H_MPLc + H_RLc+ H_M + H_Rla + H_GDLa

WP8: channel cathode

WP7 + extrude: GDL cathode

WP6 + extrude: MPL cathode

> WP5 + extrude: RL cathode

WP4 + extrude: Membrane

WP3 + extrude: RL anode

WP2 + extrude: GDL anode

WP1 + extrude: H_ch + H_GDLa + H_Rla + H_M + H_RLc + H_GDLc + H_MPLc

► WP1: channel anode

Mesh

- ✤ Size: fine
- ✤ Free Triangular
- Swept: generates hexahedrons
 - Ditribution: 3 elements
- Complete mesh consists of
 - o 253020 domain elements
 - o 172658 boundary elements
 - o 32654 edge elements.
 - Air Channel cathode
 - Gas Diffusion Layer GDLc
 - Micro Porous layer MPLc
 - Reaction Layer RLc
 - Membrane
 - Reaction Layer RLa
 - Gas diffusion Layer GDLa
 - MeOH Channel inlet

Fuel cell performance is strongly dependent on experimentally parameters such as E₀, exchange current density i₀, Tafel slope b

MeOH/air velocity and pressure profiles in channels @ 0,25 V

Fluids velocity/Flow fields geometry should be adapted/optimized for better fuel repartition
This is a laboratory cell; more complex geometry in prototypes are usually used

Mass fraction distribution of reactants & products @ 0,25 V

No relevant MeOH mass transport limitation; H₂O enrichment in cathode flow field channels

Next step: model extension with air & electro-osmotic drag implementation, as well as model validation.

Acknowledgements to

- Members of COMSOL Multiphysics support team,

- Project partners:

- & Financial suport:

Project: 17955 BG/3 Thanks for your kind attention!

Bundesministerium für Wirtschaft und Technologie

