Modeling Multiscale Resin Impregnation In A Bidirectional Composite Laminate

Gautam Salkar Jayaraman M Bachchan Kr. Mishra Swetha Manian

COMSOL Conference, Pune October 29, 2015

- Experimental resin infusion process by Vacuum Assisted Resin Transfer Molding (VARTM) results in certain void content in the composite laminates.
- This is detrimental to the mechanical properties of the composite.
- Studying the resin flow front progression can yield insights into the void formation and hence an optimum method can be developed to minimize them.
- The ability of COMSOL Multiphysics to solve fluid flow along with interface tracking was effectively used to study this.

3-D Bidirectional Fabric

Carbon Fibre Fabric Properties

Tow Designation	12K Carbon Fiber
Fabric Dimensions	30 cm x 30 cm
Fiber Volume Fraction	0.48
Tow Porosity	0.48
Tow Diameter	782 µm
Fibril Diameter	5.148 μm
Longitudinal Permeability	4e-13 m ²
Transverse Permeability	9e-14 m ²

Dual Scale Resin Infusion

- Resin flow through fabric
 - Inter-Tow Flow
 - Intra-Tow Flow
- Two primary driving forces
 - Hydrodynamic pressure gradient
 - Capillary effects
- Under higher applied pressure
 - Hydrodynamic pressure gradient dominates
- Under lower applied pressure
 - Capillary effects dominates

2 D Unidirectional fabric with resin flow fronts

Physics and Model Parameters

- The inter-tow flow is modeled as Stokes flow while the intra-tow flow is a porous flow modeled using Brinkman's equation.
- The Creeping Flow module with porous media enabled is used to model this dual scale flow in COMSOL Multiphysics 5.1.
- The Level Set method is used to track the flow front progression in these regions.
- Time Dependent analysis was carried out.

Modeling Conditions

- > Initial Conditions :
- Velocity = 0
- Pressure = 0

Boundary Conditions :

- Pressure Inlet
- Pressure Outlet
- No slip walls
- **Resin Properties :**
- Resin Type : Epoxy
- Density : 1200 Kg/m³
- Viscosity : 0.157 Pa.s राष्ट्रीय वायु आकाश नवाचार एवं अनुसंधान केंद्र NATIONAL CENTRE FOR AEROSPACE INNOVATION AND RESEARCH

Unidirectional Fabric Inter Tow Lead

Unidirectional Fabric Inter Tow Lead

Bidirectional Fabric Inter Tow Lead

NATIONAL CENTRE FOR AEROSPACE INNOVATION AND RESEARCH

Bidirectional Fabric Inter Tow Lead

Unidirectional Fabric Intra Tow Lead

Unidirectional Fabric Intra Tow Lead

Bidirectional Fabric Intra Tow Lead

Bidirectional Fabric Intra Tow Lead

IT BOMBAY

Further Research

- Incorporate resin curing kinetics.
- Time and saturation dependent inlet conditions.
- Multiple inlets and outlets.
- Different inflow conditions.
- Testing for various fiber and resin combination.
- Modeling with woven fabric.
- Developing an algorithm for achieving uniform flow front.
- Experimental validation of the model.

References

- Suresh G. Advani, Zuzana Dimitrovova, 2004, "Role of Capillary Driven Flow in Composite Manufacturing", In: Stanley Hartland ed., "Surface And Interfacial Tension - Measurement, Theory and Applications", *Library of Congress*
- Marianne M. Francois, Sharen J. Cummins, Edward D. Dendy, Douglas B. Kothe, James M. Sicilian, Matthew W. Williams, 2006, "A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework", *Journal Of Computational Physics*, 213, 141–173
- Chin-Hsiang Cheng, Hung-Hsiang Lin, 2008, "Measurement of Surface Tension of Epoxy Resins Used in Dispensing Process for Manufacturing Thin Film Transistor-Liquid Crystal Displays", *IEEE Transactions On Advanced Packaging*, 31(1)
- Nan Chen, Max Gunzburger, Xiaoming Wang, 2010, "Asymptotic Analysis of the Differences between the Stokes-Darcy System with Different Interface Conditions and the Stokes-Brinkman System", *Journal of Mathematical Analysis and Applications*, 368, 658-676

- Sandro Campos Amico, 2000, "Permeability and Capillary Pressure in the infiltration of fibrous porous media in Resin Transfer Moulding", *PhD Thesis, University of Surrey*
- Wen-Bin Young, 1996, "The effect of surface tension on tow impregnation of Unidirectional fibrous preform in Resin Transfer Molding", *Journal of Composite Materials*, 30(11)
- Hua Tan, Krishna M. Pillai, 2010, "Fast Liquid Composite Molding Simulation of Unsaturated Flow in Dual-Scale Fiber Mats Using the Imbibition Characteristics of a Fabric-Based Unit Cell", *Polymer Composites*
- N. Yamaleev, R. Mohan, 2006, "Effect of the phase transition on intra-tow flow behavior and void formation in liquid composite molding", *International Journal of Multiphase Flow*, 32, 1219–1233
- J. U. Brackbill, D. B. Kothe, C. Zemach, 1992, "A Continuum method for modeling Surface Tension", *Journal of Computational Physics*, 100, 335-354
- Min Li, Shaokai Wang, Yizhuo Gu, Zuoguang Zhang, Yanxia Li, Kevin Potter, 2010, "Dynamic capillary impact on longitudinal micro-flow in vacuum assisted impregnation and the unsaturated permeability of inner fiber tows", *Composites Science and Technology*, 70,1628–1636

Thank You

www.ncair.in