Thermal conductivity of composites: How Comsol revealed an omission in a classical paper

Philippe Berne

Univ, Grenoble Alpes, F-38000, Grenoble, France – CEA/LITEN/DTNM/SEN/LSN F-38054 Grenoble, France.

Initial objective: Develop and validate a method for the prediction of the equivalent thermal conductivity of a particulate composite.

K_{eq}?

Figure 1. The problem to be solved

A simple procedure with Comsol:

Validation against a popular model: Nan et al. [1], ellipsoidal particles. Almost 600 cites!

Revisiting Nan's model: Based on the calculation of the equivalent conductivity of a particle + resistive layer

Figure 5. Particle + resistive layer

Implicit assumptions:

- resistive layer is also an ellipsoid
- has same aspect ratio as the particle
- => False in the general case
- =>Two contributions must be added!

Aspect ratio contribution could be included in revised model, much improved match:

Figure 6. Ellipsoids, revised model

Conclusions: An improved model is established, satisfying from theoretical point of view. Practical consequences are thought to be minimal.

References:

1. Nan C.W., Birringer R., Clarke D.R. and Gleiter H., Effective thermal conductivity of particulate composites with interfacial thermal resistance, *Journal of Applied Physics*, **81**, 10, 6692-6699 (1997)