Effects of Contact Angle on the Dynamics of Water Droplet Impingement

J.Hu¹, X. Xiong², X. Huang³, and K. Wan³

¹ Department of Mechanical Engineering, University of Bridgeport

² Department of Electrical and Computer Engineering, University of Bridgeport

³ Department of Mechanical and Industrial Engineering, Northeastern University

COMSOL CONFERENCE 2015 BOSTON

COMSOL Conference, Boston 2015

Introduction

□ Mathematical Models

- Contact angle models
- Fluid flow
- Free surface tracking

Results and Discussion

- Droplet impingement process
- Study of contact angle

Conclusions

Droplet Impingement Dynamics Applications

□ Inkjet printing

- □ Spray cooling of turbines and electronics
- □ Spray coating and painting
- □ Solder-drop deposition
- □ Laser deposition
- **Rain drop**

Droplet Impingement Dynamics Influencing Parameters

- **D**roplet properties
- **D**roplet size
- □ Impact velocity
- □ Attack angle
- □ Surface wettability
- □ Surrounding pressure

Liquid Droplet Impacting on a Dry Surface

Rioboo et al., 2001

COMSOL Conference, Boston 2015

Contact Angle

Kistler's law for dynamic contact angle (DCA)

$$\theta_{d} = f_{H} \left[Ca + f_{H}^{-1}(\theta_{e}) \right]$$

$$f_{H} = \arccos \left\{ 1 - 2 \tanh \left[5.16 \left(\frac{x}{1 + 1.31x^{0.99}} \right)^{0.706} \right] \right\}$$

$$Ca = \frac{\mu U_{cl}}{\sigma}$$

Quasi-dynamic contact angle

$$\theta_{d} = \begin{cases} \theta_{a} & \text{if } U_{cl} \ge 0\\ \theta_{r} & \text{if } U_{cl} < 0 \end{cases}$$

7

□Navier-Stokes equations for fluid flow:

$$\nabla \mathbf{u} = 0$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \nabla \mathbf{u} \right) = \nabla \left[-p\mathbf{I} + \mu \nabla \mathbf{u} + (\nabla \mathbf{u})^T \right] + \rho \mathbf{g} + \mathbf{F}_{st}$$

□Phase field method for tracking interface

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \nabla \phi = \nabla \cdot \frac{\gamma \lambda}{\varepsilon^2} \nabla \psi$$

$$\psi = -\nabla \cdot \varepsilon^2 \nabla \phi - (\phi^2 - 1)\phi$$

where

$$\gamma = \chi \varepsilon^2 \qquad \sigma = \frac{2\sqrt{2}\lambda}{3\varepsilon}$$

$$G = \frac{\lambda}{\varepsilon^2} \psi$$

COMSOL Conference, Boston 2015

Mathematical Model-Computational Domain and Boundary Conditions

COMSOL Conference, Boston 2015

 ϕ

Wetted wall boundary

$$\mathbf{n} \cdot \varepsilon^2 \nabla \phi = \varepsilon^2 \cos(\theta_w) |\nabla$$
$$\mathbf{n} \cdot \frac{\sigma \lambda}{\varepsilon^2} \nabla \psi = 0$$

Contact Angle Model	Value
SCA	95°, 100°, 105°
Quasi-DCA	95° to 105°
DCA	Kistler's model

COMSOL Conference, Boston 2015

Fluid Properties and Simulation Conditions

	Density	Viscosity	Surface tension	Droplet size	Impact velocity
	ho, kg/m ³	µ, Pa∙s	σ , N/m	D_0 (mm)	V_i (m/s)
Water	998	0.001	0.073	2.7	1.17
Air	1.204	1.814×10^{-5}			

Reynolds number ($Re = \rho uD/\mu$): 3100 Weber number ($We = \rho u^2 D/\sigma$) : 50 Ohnesorge number ($Oh = (We)^{1/2}/Re$) : 0.0023

10/20/2015

11

Results: Constant Static Contact Angles

COMSOL Conference, Boston 2015

Results: Constant Static Contact Angles

COMSOL Conference, Boston 2015

Results: Constant Static Contact Angles

COMSOL Conference, Boston 2015

14

COMSOL Conference, Boston 2015

15

105-95 degree

10

20

30

Time=0 Surface: Volume fraction of fluid 2 (1)

×10⁻⁴

80

70

60

50

40

30

20

10

0

-40

-30

-20

-10

0

COMSOL Conference, Boston 2015

10/20/2015

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

×10⁻⁴ ▼ 0

A1

COMSOL Conference, Boston 2015

10/20/2015

17

COMSOL Conference, Boston 2015

Results and Discussions

Substantial mass loss

COMSOL Conference, Boston 2015

Conclusions

- The dynamic process of water impinging onto a wax surface was simulated with the Phase Field Method in COMSOL.
- □ The dynamic process of impingement was presented.
- □ The droplet spreading factor and apex height were found to agree with the experimental results in the early spreading stage, but discrepancy were found in the receding stage.
- □ The effect of the contact angle on the droplet impingement process was studied using three contact angle models

COMSOL Conference, Boston 2015

