

Effects of Solvers on Finite Element Analysis in COMSOL MULTIPHYSICS[®]

Chethan Ravi B.R Dr. Venkateswaran P

Corporate Technology - Research and Technology Center Siemens Technology and Services Private Limited Bangalore-560100 Chethanravi.br@siemens.com

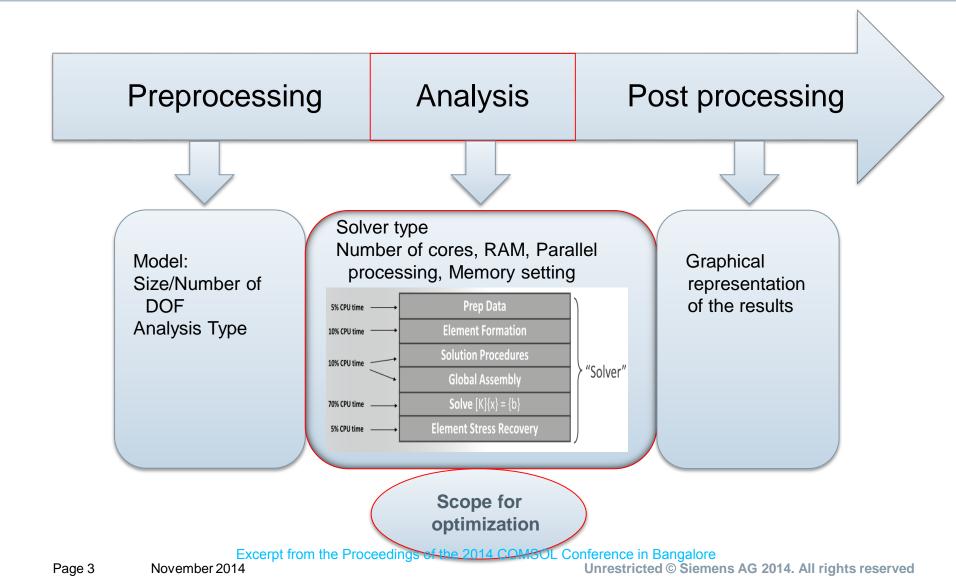
COMSOL CONFERENCE 2014 BANGALORE

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

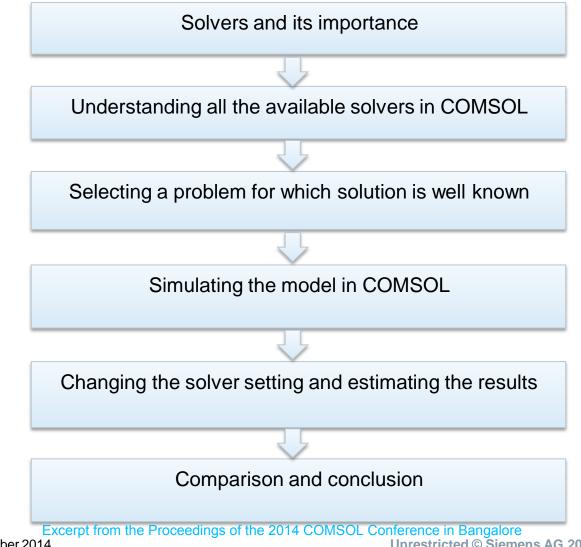
Page 1 November 2014

Outline

- Background
- Objective
- Methodology
- Simulation results and discussion

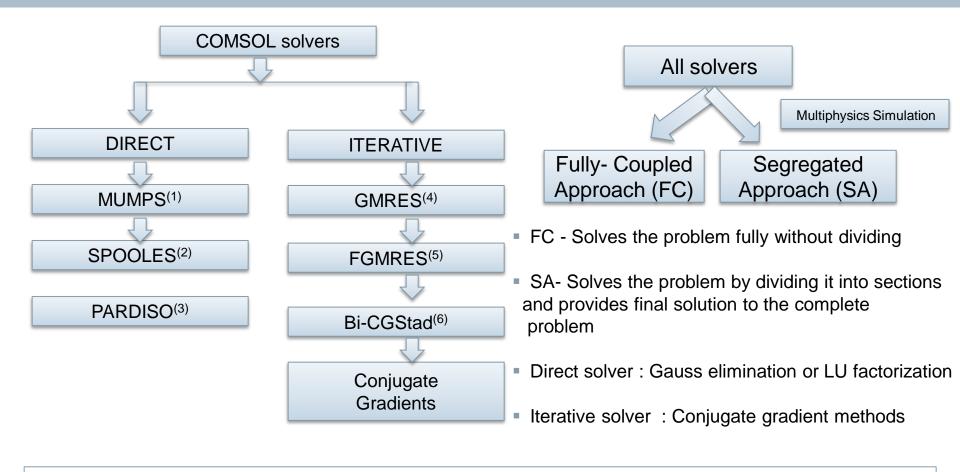

Conclusion

Finite element analysis



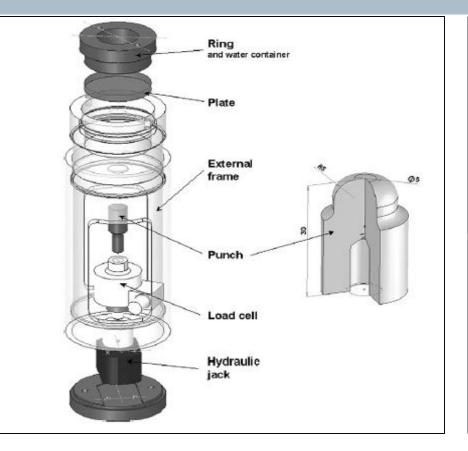
Objectives

- 1. To understand the various solvers available in COMSOL
- 2. To validate the adoptability of various solvers and solver settings
- 3. To capture the effect of the solvers on the solution in terms of
 a. Accuracy of results
 b. Memory consumed
 c. Computational time
- 4. To understand the need of changing the default solver settings


Methodology

Page 5 November 2014

COMSOL and its solvers



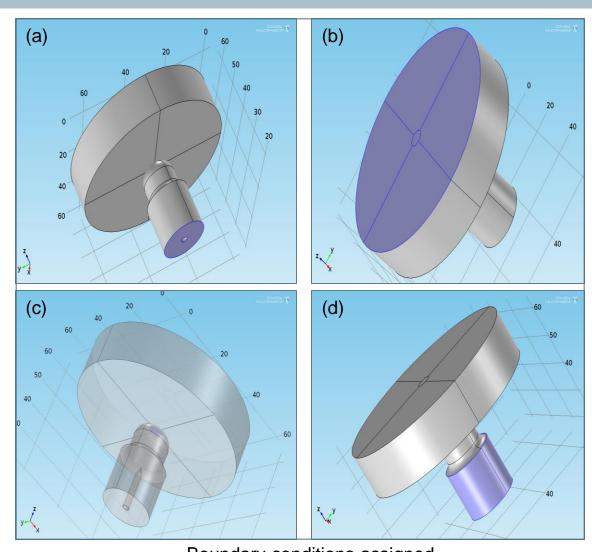
- (1) Multi-frontal Massively Parallel Sparse Direct Solver
- (2) Sparse Object Oriented Linear Equations Solver
- (3) Parallel Sparse Direct Solver

- (4) Generalized minimum residual iterative method
- (5) Flexible generalized minimum residual method
- (6) Bi conjugate gradient stabilized iterative method

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

Plate - Indenter Contact Assembly to Review Solver

010 S (b) (a) Diameter: 70mm Center: Onm (0mm,0mm) (C) (d)


SIEMENS

Experimental arrangement for the punch–plate contact (a) Indenter dimensions(b) Indenter 3D model(c) Plate model(d) Plate indenter assembly

Source: Massimiliano pau, and Antonio baldi, "Experimental analysis of contact for the indentation of a flat rounded punch", International journal of solids and structures, Elsevier, volume Noe A3, 2006tr 7959 7365 lings of the 2014 COMSOL Conference in Bangalore Page 7 November 2014 Unrestricted © Siemens AG 2014. All rights reserved

Boundary conditions assigned in COMSOL

Boundary conditions defined

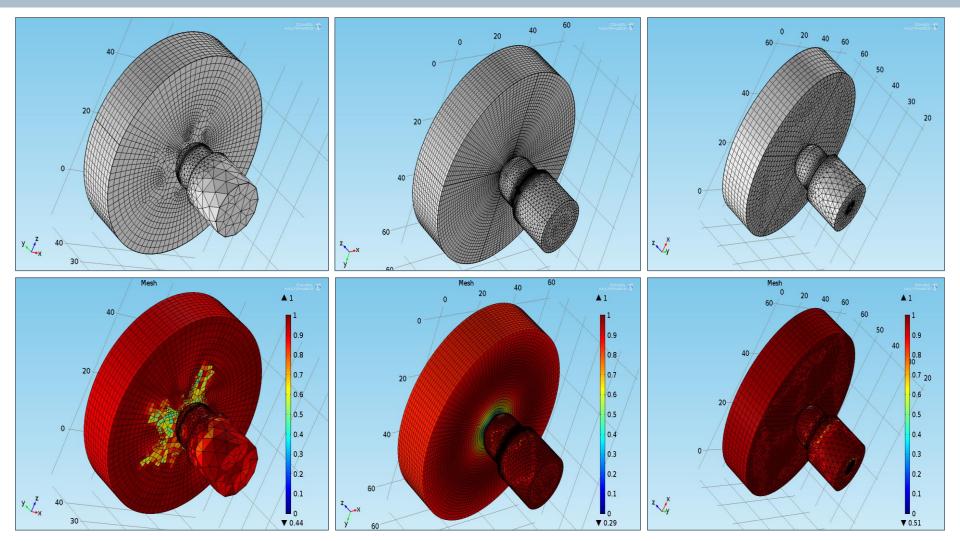
(a) Boundary load of 12kN	Fig.8(a)
(b) Fixed boundary	Fig.8(b)
(c) Contact pair *	Fig.8(c)
(d) x and y displacement a constrained	re Fig.8(d)

Material Properties for both indenter and plate:

Material: AISI 3140Steel

Young's modulus: 210X10⁹ N/m²

Poisson's Ratio: 0.3


Density: 7700 kg/m³

* Augmented Lagrangian Method

Boundary conditions assigned the 2014 COMSOL Conference in Bangalore

Discretized plate punch model

Discretized model and mesh quality plots Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore Unrestricted © Siemens AG 2014. All rights reserved

Results and discussion

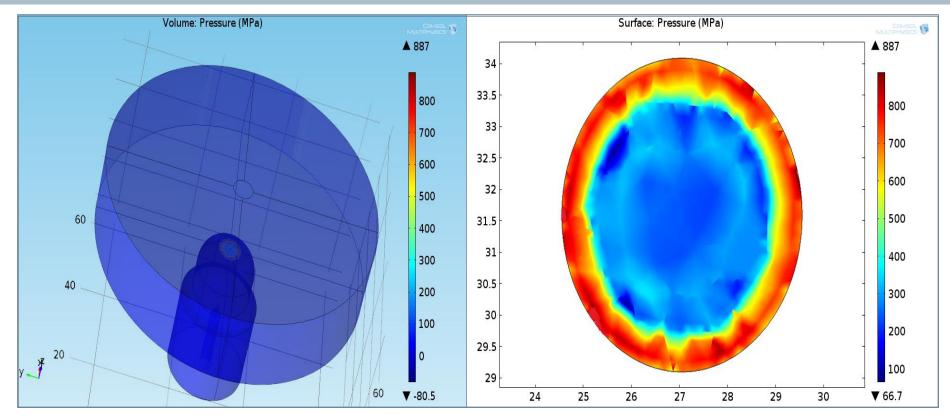


Fig.10 volume pressure plot

Mesh statistics:

Total number of tetrahedral elements : 67868Minimum element quality: 0.1802Average element quality: 0.7718

Fig.11 Surface contact pressure plot

Experimental contact pressure	900MPa
Simulated Contact pressure	887MPa

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

Page 10 November 2014

Results from various solvers and its comparision

Solver	Approach	Sub category	Percentage Error	Time taken to solve	Memory consumed
Direct	Fully coupled	MUMPS	1.5%	23min	12GB
		PARDISO	1.47%	30min	12.6GB
		SPOOLES	1.48%	240min	18GB
Direct	Segregated	MUMPS	Same as above		
		PARDISO			
		SPOOLES			
Iterative [GMRES]	Segregated	Jacobi	14.15%	47min	3.06GB
		SOR	14.2%	15min	3.09GB
		Vanka	14.3%	16min	3.46GB
		SCGS	14.15%	51min	3.44GB
		SOR Line	14.18%	28min	3.54GB
		SOR Gauge	14.62%	34min	3.19GB
		SOR Vector	14.17%	18min	3.2GB
		Multigrid	14.12%	5min	3.29GB
		Domain Decomposition	14.56%	20min	10.52GB
		Incomplete LU	14.14%	60min	3.78GB

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore Unrestricted © Siemens AG 2014. All rights reserved

Conclusion

- Contact pressure is evaluated with the help of various solvers available
- Direct solver algorithms are always the best if problem size allows using this solver (DOFs depends on the analysis type)
- Direct solvers are resource intensive i.e. large memory requirements
- Method used in iterative solver reduces error through an iterative process and leads solution to convergence
- Iterative solvers requires less memory and best for well conditioned bigger problem
- Problems involving time dependent contact and more number DOF demands the change in default solver settings.

References

[1]. O.c. Zzienkiewicz, R.I. Taylor, "The finite element method", Fifth edition, Volume 2: Solid mechanics, ISBN 0 7506 50 55 9, Page No. 347 – 357.Bristol, 2000.

[2]. Massimiliano pau, Bruno leban and Antonio baldi, "Experimental analysis of contact for the indentation of a flat rounded punch", International journal of solids and structures, Elsevier, volume No. 43, 2006, 7959-7965

[3]. A.W.A. Konter, Advanced Finite Element Contact Benchmarks, NAFEMS, 2006.

- [4]. COMSOL MULTIPHYSICS user guide, Version 4.3, May 2012.
- [5]. Solving the Linear System Matrix, Direct and Iterative, COMSOL Solvers, 2013.
- [6]. Structural Mechanics Module User Guide, version 4.3, COMSOL, 2012.
- [7]. Erke Wang, "ANSYS contact", CAD-FEM GmbH, Germany, 2011.

Thanks for your attention!

 Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

 Page 14
 November 2014

 Comparison of the served
 Comparison of the served