

COMSOL CONFERENCE 2014 CAMBRIDGE

3D Multiphysics Modelling of Bulk High Temperature Superconductors for Use as Trapped Field Magnets

Dr Mark Ainslie

Royal Academy of Engineering Research Fellow

Bulk Superconductivity Group, Department of Engineering

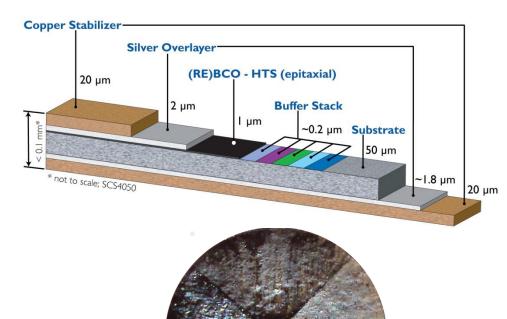
Superconducting Electrical Engineering Applications

Almost all aspects of electric power systems have a superconducting equivalent:

• Transformers, cables, electric machines (motors & generators)

New technologies enabled by superconductors:

- Superconducting magnetic energy storage
- Superconducting fault current limiters

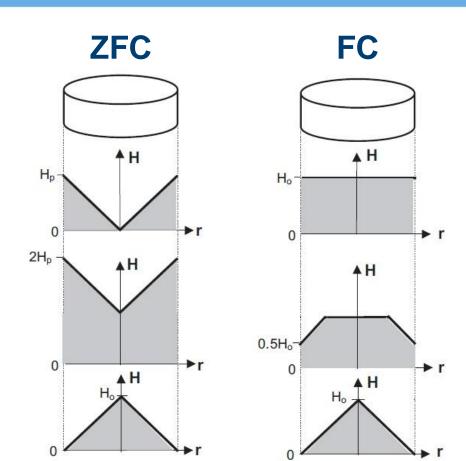


Superconducting Electric Machine Research

- Using superconductors can increase electric / magnetic loading of an electric machine
 - <u>WIRE FORM</u>
 - Higher current density, lower wire resistance
 - BULK FORM
 - Bulk superconductors as trapped field magnets
 > permanent magnets

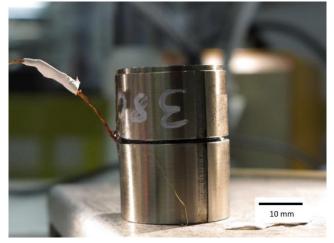
Bulk High Temperature Superconductors

- Conventional magnets (NdFeB, SmCo) limited by material properties
 - Magnetization <u>independent</u> of sample volume
- Bulk HTS trap magnetic flux via macroscopic electrical currents
 - Magnetization <u>increases</u> with sample volume
- Magnetization requires application + removal of large magnetic field


A large, single grain Gd-Ba-Cu-O bulk superconductor

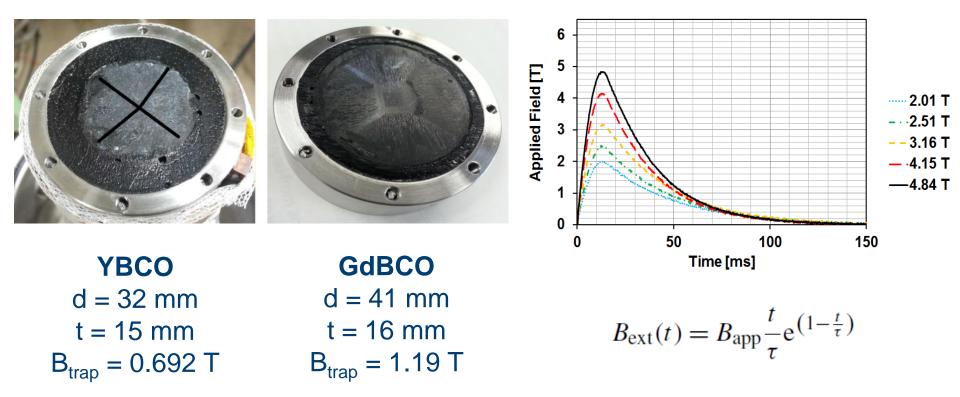
Magnetization of Bulk HTS

- Three magnetization techniques:
 - Field Cooling (FC)
 - Zero Field Cooling (ZFC)
 - Pulse Field Magnetization (PFM)
- To trap B_{trap}, need at least B_{trap} or higher
 - FC and ZFC require large magnetizing coils
 - Impractical for applications/devices

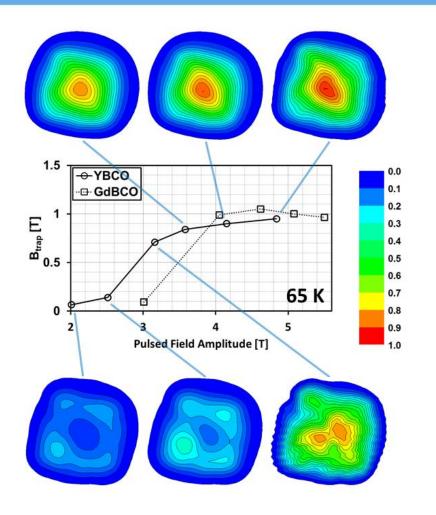


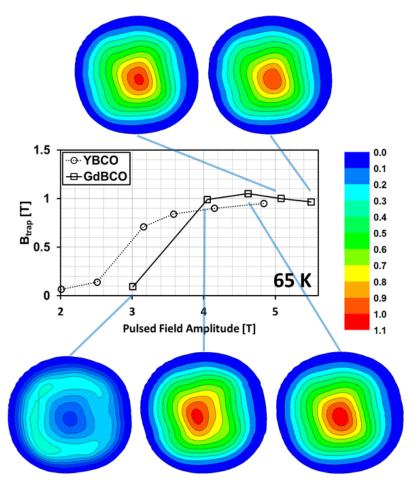
Trapped Magnetic Field Potential of Bulk HTS

- Demonstrated trapped fields over 17 T (field cooling)
 - 17.6 T at 26 K
 - 2 x 25 mm GdBCO Durrell, Dennis, Jaroszynski, Ainslie et al. Supercond. Sci. Technol. 2014
- Significant potential at 77 K
 - $J_c = up$ to 5 x 10⁴ A/cm² at 1 T
 - B_{trap} up to 1 ~ 1.5 T for YBCO
 - B_{trap} > 2 T for (RE)-BCO
- Record trapped field = 3 T at 77 K
 - 1 x 65 mm GdBCO
 - Nariki, Sakai, Murakami Supercond. Sci. Technol. 2005


Pulse Field Magnetization

- PFM technique = compact, mobile, relatively inexpensive
- Issues = B_{trap} [PFM] < B_{trap} [FC], [ZFC]
 - Temperature rise ΔT due to rapid movement of magnetic flux
- Many considerations:
 - Pulse magnitude, pulse duration, temperature, number of pulses, shape of magnetising coil(s), sample material properties
- Record PFM trapped field = 5.2 T at 29 K (45 mm diameter Gd-BCO) [Fujishiro et al. *Physica C* 2006]


Flux dynamics of (RE)BCO bulk superconductors for pulsed field magnetisation



Ainslie et al. Supercond. Sci. Technol. 27 (2014) 065008

Ainslie et al. Supercond. Sci. Technol. 27 (2014) 065008

- Finite Element Method (FEM) using Comsol Multiphysics
- Governing equations:

- Finite Element Method (FEM) using Comsol Multiphysics
- Governing equations:
 - Maxwell's equations (*H* formulation) + E-J power law
 - AC/DC (or PDE) module

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = -\frac{\partial (\mu_0 \mu_r \mathbf{H})}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J}$$

- Finite Element Method (FEM) using Comsol Multiphysics
- Governing equations:
 - Maxwell's equations (*H* formulation) + E-J power law
 - AC/DC (or PDE) module
 - PFM needs to include thermal equations
 - Heat Transfer (or PDE) module

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = -\frac{\partial (\mu_0 \mu_r \mathbf{H})}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J}$$

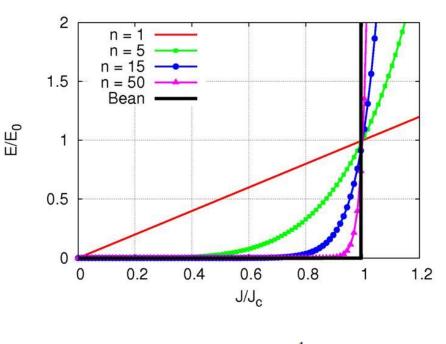
$$\rho \cdot C \frac{\mathrm{d}T}{\mathrm{d}t} = \nabla \cdot (k \nabla T) + Q$$

 $Q = E_{\text{norm}} \cdot J_{\text{norm}}$

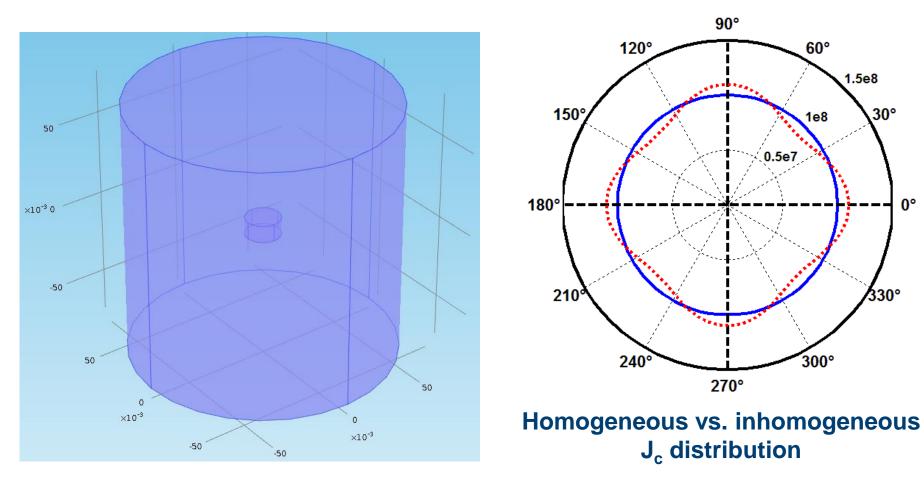
- Finite Element Method (FEM) using Comsol Multiphysics
- Governing equations:
 - Maxwell's equations (*H* formulation) + E-J power law
 - AC/DC (or PDE) module
 - PFM needs to include thermal equations
 - Heat Transfer (or PDE) module
 - $J_c(\boldsymbol{B},T)$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = -\frac{\partial (\mu_0 \mu_r \mathbf{H})}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J}$$

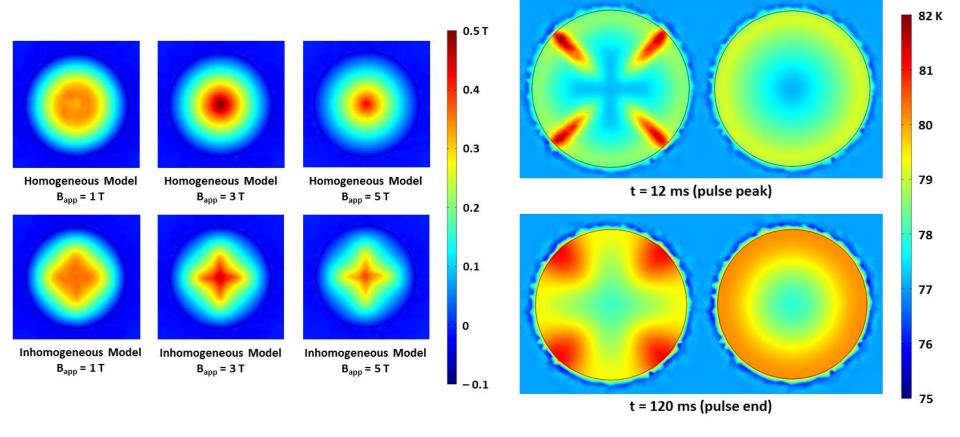
$$\rho \cdot C \frac{\mathrm{d}T}{\mathrm{d}t} = \nabla \cdot (k \nabla T) + Q$$


$$Q = E_{\text{norm}} \cdot J_{\text{norm}}$$

$$J_{\rm c} = \frac{J_{\rm c0}}{\left(1 + \frac{B}{B_0}\right)^{\alpha}}$$
$$J_{\rm c0}(T) = \alpha \left[1 - \left(\frac{T}{T_{\rm c}}\right)^2\right]^{1.5}$$


- Why is HTS material modelling difficult?
 - Conventional materials = nonlinear permeability, linear resistivity
 - Superconductors = linear permeability, non-linear resistivity
- Non-linearity is extreme: power law with n > 20

$$\mathbf{E} = E_0 \left(\frac{J}{J_c}\right)^{n-1} \frac{\mathbf{J}}{J_c}$$



Ainslie et al. Supercond. Sci. Technol. 27 (2014) 065008

0°

Ainslie et al. Supercond. Sci. Technol. 27 (2014) 065008

Thank you for listening

THE ROYAL SOCIETY

Contact email: Website: mark.ainslie@eng.cam.ac.uk http://www.eng.cam.ac.uk/~mda36/

