Simulation of Mass Transfer in a Microfluidic Experiment Using the Moving Mesh Method

Kirk Weisbrod, Randy Roberts, Becky Chamberlin and Steve Yarbro

October 9, 2014

Operated by Los Alamos National Security, LLC for NNSA

Slide 1

Modeling of Microreactors

- Two phase liquid-liquid systems are used extensively in chemical processes
- Microfluidics promises high mass transfer rates and compactness
- Optimization of a microreactor system must address numerous configuration options and operating parameters
- Progress has been made toward characterization of two-phase flow
- Need a definitive set of experiments to validate microfluidic mass transfer model
- Modeled Burns Ramshaw experiments

Initial Attempts to Model Experiments With COMSOL

Provides solutions that describe the interaction between multiple physical systems

- Phase Field method
- Provides improved phase conservation compared to Level Set
- Mobility parameter allows matching of L/D of slugs

(b) Mobility Parameter = 100

(d) Mobility Parameter = 10,000

Initial Attempts to Model Experiments (Continued)

The dispersed phase can undergo spontaneous shrinkage with Cahn-Hilliard formulation in the Phase Field method

Time=0 Surface: Volume fraction of fluid 1 (1)

Initial Attempts to Model Experiments (Continued)

Spontaneous phase generation can also occur

Time=0 Surface: Volume fraction of fluid 1 (1)

COMSOL – Moving Mesh Method

- Uses an Arbitrary Lagrangian-Eulerian Formulation (ALE)
- Advantages
 - Phases are conserved
 - A discrete phase boundary allows specification of species locations and partition coefficient
 - Slug deformation based upon physical forces
- Disadvantage
 - Will not model formation of fluid slugs

Case Study – Burns - Ramshaw Experiments

- Experimental conditions:
 - 0.38 mm square channel
 - Kerosene contains 0.5 M acetic acid
 - Water contains 0.25 M KOH
 - Flow velocity = 2.8 mm/sec
 - Acetic acid prefers aqueous phase
 (P =Co/Cw = 0.036)

- Modeled with moving mesh method
 - Contact angles modeled with Navier slip boundary condition
 - Distribution coefficient implemented with stiff spring method
 - Reaction between KOH and acetic acid modeled

Moving Mesh – Two step method

Fluid dynamics is solved first

Mass transfer solved under steady-state flow

NNS

Slide 8

Characteristics of Flow at Interface

Development of secondary flow pattern

Operated by Los Alamos National Security, LLC for NNSA

Slide 9

2D - Simulations

LOS Alamos

EST. 1943

0

3D Simulation for Acetic Acid Concentration

3D Simulation for Potassium Hydroxide Concentration

2D Contact Angle & 3D Model

Operated by Los Alamos National Security, LLC for NNSA

Slide 13

Summary and Future Work

- Level set and Phase Field method model slug formation
 - Lack of discrete boundary creates challenge for mass transfer
- Moving mesh method
 - Does not model slug formation
 - Effectively models mass transfer
- Validated predictions provide basis for simulating experiments
- Improvement in 3-D re-meshing is needed to maintain element quality at contact angle $\neq \pi/2$

