COMSOL Conference 2014 Boston Session: Transport Phenomena Boston Marriott Newton Commonwealth Ballroom 4

Boston, MA

Commonwealth Ballroom 4 2:45 PM – 4:15 PM

October 9, 2014

Moderator : William Clark

COMSOL CONFERENCE 2014 BOSTON COMSOL CONFERENCE 2014 BOSTON

H₂SO₄ Catalysis: Perspective & Opportunities for Reducing SO₂ Emissions

Sulfuric Acid (H₂SO₄) Demand & Production -

Global H₂SO₄ Demand by Application

Global H₂SO₄ Production and Consumption*

- H₂SO₄ is the chemical with the highest total annual production on a global basis.
- World H₂SO₄ production/consumption in 2011 was estimated as 200 MM tons, or about \$US 25-30 MMM.
 - The USA is the largest **consumer** and China is the largest **producer** of H_2SO_4
- Global H_2SO_4 demand has increased by 58% from 1990 to 2011.
- H₂SO₄ is considered as a good indicator of a nation's industrial strength.
- The commercial importance of H₂SO₄ is the subject of various annual and biannual conferences (*e.g.*, Sulphur and Sulphuric Acid Conferences).
 (http://www.crugroup.com/events/sulphur)

A. A. Kiss, C. S. Bildea, et al. (2010).

"Dynamic modeling and process optimization of an industrial sulfuric acid plant." Chemical Engineering Journal 158(2): 241-249

SO₂ Oxidation Reactor Technology

Inlet

- Quasi-isothermal catalytic SO_2 oxidation
- Contacting trays
- Cooling tubes
- 2 to 12 volume % of SO_2
- •Temperature range is 400 460°C

Convertor Conversion & Temperature Profiles

Pseudo-homogeneous T(z) C(z) Adiabatic Plug-flow 1-D (Reaction Engineering Lab 3.5a)

Monolith Reactor

- •Honevcomb structure
- •Metallic or ceramic support •Circular, triangular or square cross sections •Parallel and long channels

•Lower pressure drop

Patent : US00xxxx402A

Motivation for Research

Global SO₂ Emissions 2700 Metric Tons/day

Target for new plants, or replacement catalysts in existing plants: 2.5 to 4 lbs SO_2 /ton acid, but may vary depending on EPA limits

Image Courtesy: www.dupont.com

Best Available Control Technologies (BACT) for H₂SO₄ Plants

- Control technologies without additional processing [Front-End Fix; Less Expensive]
 - New Catalyst Technology
 - Converter Size/Arrangement/Catalyst Loading.....
 - Operating Parameters (feed gas composition, quality of cooling efficiency, etc.)
- Control technologies with additional processing [End-of-Pipe Fix; More Capital Intensive]
 - Single or Dual Absorption Operation
 - Waste Management (recycle of weak H₂SO₄ using activated carbon)
 - Scrubbing (removal using H₂O₂-based solvent)

Reference: Frank, N.A. *Clean air act requirements for sulfuric acid plants in the USA*. Paper presented at Sulfur 2011 conference, Houston, November 7-10, 2011

Multi-Lobe Catalyst Technology

 Prior art based on multi-lobe shapes considering activity, attrition resistance and dusting during catalyst loading and extended process operation

Reference: A. Nagaraj and P. L. Mills (2008). <u>Analysis of heat, mass transport, and momentum transport effects in complex catalyst</u> shapes for gas-phase heterogeneous reactions using COMSOL multiphysics. COMSOL Conference 2008 Boston, MA.

COMSOL Modules

Particulate Modeling

• Heat Transfer by Conduction

$$\rho C_{p} \frac{\partial \mathbf{T}}{\partial t} + \nabla \cdot (-k \nabla \mathbf{T}) = \mathbf{Q} + h(\mathbf{T}_{ext} - \mathbf{T}) + C(\mathbf{T}_{amb}^{4} - \mathbf{T}^{4})$$

• Diffusion

$$\frac{\partial \mathbf{c}_{i}}{\partial t} + \nabla \cdot (-D_{i} \nabla \mathbf{c}_{i}) = \mathsf{R}_{i}$$

• Monolith Modeling

• Brinkman Equation (Flow in Porous Media)

 $\frac{\rho \partial \mathbf{u}}{\varepsilon \partial t} + \left(\frac{\eta}{\kappa} + Q\right)\mathbf{u} = \nabla \cdot \left[-p\mathbf{I} + \frac{1}{\varepsilon}\left\{\eta \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}}\right) - \left(\frac{2}{3}\eta - \kappa_{\mathrm{dv}}\right)(\nabla \cdot \mathbf{u})\mathbf{I}\right\}\right] + \mathbf{F}$

• Diffusion

 $\frac{\partial \mathbf{c}_{i}}{\partial t} + \nabla \cdot (-D_{i} \nabla \mathbf{c}_{i}) = \mathsf{R}_{i}$

Convection and Diffusion

 $\frac{\partial \mathbf{c}_{i}}{\partial t} + \nabla \cdot (-D_{i} \nabla \mathbf{c}_{i}) = \mathsf{R}_{i} - \mathbf{u} \nabla \mathbf{c}_{i}$

Typical Expressions

🔞 Global Expre	essions			×
Name	Expression			Unit
p_so2	abs(c_so2*Rg*Tp/10^6)			
p_o2	abs(c_o2*Rg*Tp/10^6)			Partial pressures
p_so3	abs(c_so3*Rg*Tp/10^6)			
r_so2_f	k1_v*p_o2*p_so2/(22.414*(1+	K2_v*p_so2+K3_v*p_so3)^2)		
r_so2_b	k1_v/Kp_v*p_o2^0.5*p_so3/(2	2.414*(1+K2_v*p_so2+K3_v*p_so3)^2)		
r_so2	r_so2_f - r_so2_b			Reaction rate
r_so2_comsol	r_so2*10^6/3600*rho_cat			Reduction face
Ct	P/Rg/Tp*10^6			1/K
y_so2	c_so2/Ct			K-mol/m ³
y_02	c_o2/Ct			
y_so3	c_so3/Ct		\longrightarrow	Molar Fractions
y_n2	1-y_so2-y_o2-y_so3			
kg_502_case2	jD_case2*GG/(M_mix_case2*Pf	_502_case2*5c_502_case2^(2/3))		
kg_O2_case2	jD_case2*GG/(M_mix_case2*Pf	_02_case2*5c_02_case2^(2/3))		
kg_SO3_case2	jD_case2*GG/(M_mix_case2*Pf	_SO3_case2*Sc_SO3_case2^(2/3))		
Q_rxn	dhr_avg*r_so2_comsol			
r	sqrt(x^2)			m
e_factor	integral_rate/(r_so2_comsol_ma	ax*volume)/2		
k1_v	exp(12.16-5473/Tp)		> Kinet	tic rate constants
K2_v	exp(-9.953+8619/Tp)			
K3_v	exp(-71.745+52596/Tp)	[
Kp_v	exp(-71.745+52596/Tp)	J		
D_502_02_v	(k*(Tp)^1.75/(P*(v_SO2^(1/3)	+v_O2^(1/3))^2)*(1/m_SO2+1/m_O2)^0.5)*parti	cle_voidage/particle_tortuo:	sity*10^-4 []
D_502_503_v	(k*(Tp)^1.75/(P*(v_SO2^(1/3)	+v_5O3^(1/3))^2)*(1/m_5O2+1/m_5O3)^0.5)*pa	rticle_voidage/particle_tort	uosity*10^-4 []
D_502_N2_v	(k*(Tp)^1.75/(P*(v_SO2^(1/3)+v_N2^(1/3))^2)*(1/m_SO2+1/m_N2)^0.5)*particle_voidage/particle_tortuosity*10^-4			
D_02_503_v	(k*(Tp)^1.75/(P*(v_O2^(1/3)+v_SO3^(1/3))^2)*(1/m_O2+1/m_SO3)^0.5)*particle_voidage/particle_tortuosity*10^-4			
D_02_N2_v	(k*(Tp)^1.75/(P*(v_O2^(1/3)+v_N2^(1/3))^2)*(1/m_O2+1/m_N2)^0.5)*particle_voidage/particle_tortuosity*10^-4			
D_503_N2_v	(k*(Tp)^1.75/(P*(v_SO3^(1/3)+v_N2^(1/3))^2)*(1/m_SO3+1/m_N2)^0.5)*particle_voidage/particle_tortuosity*10^-4			
D_502_v	((y_o2-(y_so2*-0.5/-1))/D_SO2_O2_v)+((y_so3-(y_so2*1/-1))/D_SO2_SO3_v)+((y_n2-(y_so2*-1/-1))/D_SO2_N2_v)			
D_02_v	((y_so3-(y_o2*1/-0.5))/D_O2_SO3_v)+((y_so2-(y_o2*-1/-0.5))/D_SO2_O2_v)+((y_n2-(y_o2*-1/-0.5))/D_O2_N2_v)			
D_SO3_v	[((y_n²-(y_so3*1/1)))/D_503_N2_v)+((y_so2-(y_so3*-1/1)))/D_502_503_v)+((y_o2-(y_so3*-0.5/1)))/D_02_503_v) → Binary. knudsen ar			
D_N2_v	((y_so2-(y_n2*-1/1))/D_SO2_N2_v)+((y_o2-(y_n2*-0.5/1))/D_O2_N2_v)+((y_so3-(y_n2*1/1))/D_SO3_N2_v)			
Dk_502_v	particle_voidage/particle_tortuosity*(9700*rm*(Tp/m_SO2)^0.5)*10^-4			effective diffusivities
Dk_02_v	particle_voidage/particle_tortuosity*(9700*rm*(Tp/m_O2)^0.5)*10^-4			
Dk_503_v	particle_voidage/particle_tortuosity*(9700*rm*(Tp/m_SO3)^0.5)*10^-4			
Dk_N2_v	particle_voidage/particle_tortuosity*(9700*rm*(Tp/m_N2)^0.5)*10^-4			
De_SO2	(1+(B0*P*1.01325e5)/(Dk_SO2_v*Mu_mixture))/(D_SO2_v+1/Dk_SO2_v)			
De_02	(1+(B0*P*1.01325e5)/(Dk_O2_v*Mu_mixture))/(D_O2_v+1/Dk_O2_v)			
De_503	(1+(B0*P*1.01325e5)/(Dk_SO3_v*Mu_mixture))/(D_SO3_v+1/Dk_SO3_v)			
De_N2	(1+(B0*P*1.01325e5)/(Dk_N2_	v*Mu_mixture))/(D_N2_v+1/Dk_N2_v)		
•		III		
i 🛱 🖬			OK Cancel	Apply Help

Transport-Kinetics Particle Model

Species Mass Balance:

$$\nabla \bullet \boldsymbol{N}_i = \boldsymbol{v}_i \ \boldsymbol{r} \ \boldsymbol{\rho}_p$$

where $i = SO_2$, O_2 , SO_3 and N_2

and $v_i = -1, -\frac{1}{2}, 1$ and 0

Energy Balance:

$$\nabla \bullet \overline{\boldsymbol{q}} = - (\Delta \boldsymbol{H}_{rxn}) \boldsymbol{r} \rho_{P}$$

$$\frac{SO_2}{r} \frac{\text{Oxidation Kinetics:}}{p_{SO2} \left(1 - \frac{p_{SO3}}{p_{SO2} \sqrt{p_{O2}} K_P}\right)}$$
$$r = \frac{k_1 p_{O2} p_{SO2} \left(1 - \frac{p_{SO3}}{p_{SO2} \sqrt{p_{O2}} K_P}\right)}{22.414 \left(1 + K_2 p_{SO2} + K_3 p_{SO3}\right)^2}$$

Hougen-Watson Mechanism RLS = Adsorbed $SO_2 \& O_2$

 $SO_2 + \frac{1}{2} O_2 \rightleftharpoons SO_3$

- Statistical Design
- K-V salt catalyst on silica
- ca. 59 Data Points
- $420^{\circ}C < T < 590^{\circ}C; P_{T} = 1 \text{ atm}$

Diffusion Flux Models

SO₂ Concentration Profiles

Dusty Gas Model

η = 0.83

Rounded Step

Temperature Profiles

Particulate vs Monolith

Modeling Results - Conclusion

Detailed knowledge of catalyst morphology, *e.g.*, 3-D PSD, and other supporting data is required to validate flux models

Summary & Conclusions

- Models for sulfuric acid catalysis that account for various transportkinetic interactions in particulates & monoliths can be solved using COMSOL Multiphysics
- These models provide a fundamental basis for synthesis of next generation particulate or monolith catalyst having higher activity and hence reduce environmental impact vs existing catalyst
- Monolith supports provide a potential catalyst platform for SO₂ oxidation catalysts having higher activity, lower ΔP, higher mechanical strength and reduced dust *vs* particulate catalysts. This is a work in progress that will be guided by COMSOL-based modeling tools.
- Data on 3-D catalyst pore structure from SEM image processing would allow more realistic predictions of catalyst performance